| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswrdi | Structured version Visualization version GIF version | ||
| Description: A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| iswrdi | ⊢ (𝑊:(0..^𝐿)⟶𝑆 → 𝑊 ∈ Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . . . . 5 ⊢ (𝑙 = 𝐿 → (0..^𝑙) = (0..^𝐿)) | |
| 2 | 1 | feq2d 6675 | . . . 4 ⊢ (𝑙 = 𝐿 → (𝑊:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^𝐿)⟶𝑆)) |
| 3 | 2 | rspcev 3591 | . . 3 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 4 | 0nn0 12464 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 5 | fzo0n0 13684 | . . . . . . . . 9 ⊢ ((0..^𝐿) ≠ ∅ ↔ 𝐿 ∈ ℕ) | |
| 6 | nnnn0 12456 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ → 𝐿 ∈ ℕ0) | |
| 7 | 5, 6 | sylbi 217 | . . . . . . . 8 ⊢ ((0..^𝐿) ≠ ∅ → 𝐿 ∈ ℕ0) |
| 8 | 7 | necon1bi 2954 | . . . . . . 7 ⊢ (¬ 𝐿 ∈ ℕ0 → (0..^𝐿) = ∅) |
| 9 | fzo0 13651 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
| 10 | 8, 9 | eqtr4di 2783 | . . . . . 6 ⊢ (¬ 𝐿 ∈ ℕ0 → (0..^𝐿) = (0..^0)) |
| 11 | 10 | feq2d 6675 | . . . . 5 ⊢ (¬ 𝐿 ∈ ℕ0 → (𝑊:(0..^𝐿)⟶𝑆 ↔ 𝑊:(0..^0)⟶𝑆)) |
| 12 | 11 | biimpa 476 | . . . 4 ⊢ ((¬ 𝐿 ∈ ℕ0 ∧ 𝑊:(0..^𝐿)⟶𝑆) → 𝑊:(0..^0)⟶𝑆) |
| 13 | oveq2 7398 | . . . . . 6 ⊢ (𝑙 = 0 → (0..^𝑙) = (0..^0)) | |
| 14 | 13 | feq2d 6675 | . . . . 5 ⊢ (𝑙 = 0 → (𝑊:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^0)⟶𝑆)) |
| 15 | 14 | rspcev 3591 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ 𝑊:(0..^0)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 16 | 4, 12, 15 | sylancr 587 | . . 3 ⊢ ((¬ 𝐿 ∈ ℕ0 ∧ 𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 17 | 3, 16 | pm2.61ian 811 | . 2 ⊢ (𝑊:(0..^𝐿)⟶𝑆 → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 18 | iswrd 14487 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝑊:(0..^𝐿)⟶𝑆 → 𝑊 ∈ Word 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ∅c0 4299 ⟶wf 6510 (class class class)co 7390 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ..^cfzo 13622 Word cword 14485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-word 14486 |
| This theorem is referenced by: iswrdb 14492 snopiswrd 14495 iswrdsymb 14503 iswrddm0 14510 ffz0iswrd 14513 wrdnval 14517 wrdred1 14532 ccatcl 14546 swrdcl 14617 revcl 14733 repsw 14747 repsdf2 14750 cshf1 14782 wrdco 14804 wrdlen2i 14915 pmtrdifwrdellem1 19418 psgnunilem5 19431 ablfaclem2 20025 ablfac2 20028 wrdupgr 29019 wrdumgr 29031 crctcshtrl 29760 wlkiswwlks2lem5 29810 wlkiswwlksupgr2 29814 clwlkclwwlklem2a 29934 upgriseupth 30143 wrdres 32863 wrdpmcl 32866 ccatws1f1o 32880 ccatws1f1olast 32881 wrdpmtrlast 33057 cycpmconjslem1 33118 1arithidomlem1 33513 1arithidomlem2 33514 1arithidom 33515 subiwrd 34383 sseqp1 34393 ofcccat 34541 signstf 34564 signshwrd 34587 lpadlem1 34675 frlmfzowrd 42497 frlmvscadiccat 42501 grtriclwlk3 47948 |
| Copyright terms: Public domain | W3C validator |