| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswrdi | Structured version Visualization version GIF version | ||
| Description: A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| iswrdi | ⊢ (𝑊:(0..^𝐿)⟶𝑆 → 𝑊 ∈ Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . . 5 ⊢ (𝑙 = 𝐿 → (0..^𝑙) = (0..^𝐿)) | |
| 2 | 1 | feq2d 6672 | . . . 4 ⊢ (𝑙 = 𝐿 → (𝑊:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^𝐿)⟶𝑆)) |
| 3 | 2 | rspcev 3588 | . . 3 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 4 | 0nn0 12457 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 5 | fzo0n0 13677 | . . . . . . . . 9 ⊢ ((0..^𝐿) ≠ ∅ ↔ 𝐿 ∈ ℕ) | |
| 6 | nnnn0 12449 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ → 𝐿 ∈ ℕ0) | |
| 7 | 5, 6 | sylbi 217 | . . . . . . . 8 ⊢ ((0..^𝐿) ≠ ∅ → 𝐿 ∈ ℕ0) |
| 8 | 7 | necon1bi 2953 | . . . . . . 7 ⊢ (¬ 𝐿 ∈ ℕ0 → (0..^𝐿) = ∅) |
| 9 | fzo0 13644 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
| 10 | 8, 9 | eqtr4di 2782 | . . . . . 6 ⊢ (¬ 𝐿 ∈ ℕ0 → (0..^𝐿) = (0..^0)) |
| 11 | 10 | feq2d 6672 | . . . . 5 ⊢ (¬ 𝐿 ∈ ℕ0 → (𝑊:(0..^𝐿)⟶𝑆 ↔ 𝑊:(0..^0)⟶𝑆)) |
| 12 | 11 | biimpa 476 | . . . 4 ⊢ ((¬ 𝐿 ∈ ℕ0 ∧ 𝑊:(0..^𝐿)⟶𝑆) → 𝑊:(0..^0)⟶𝑆) |
| 13 | oveq2 7395 | . . . . . 6 ⊢ (𝑙 = 0 → (0..^𝑙) = (0..^0)) | |
| 14 | 13 | feq2d 6672 | . . . . 5 ⊢ (𝑙 = 0 → (𝑊:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^0)⟶𝑆)) |
| 15 | 14 | rspcev 3588 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ 𝑊:(0..^0)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 16 | 4, 12, 15 | sylancr 587 | . . 3 ⊢ ((¬ 𝐿 ∈ ℕ0 ∧ 𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 17 | 3, 16 | pm2.61ian 811 | . 2 ⊢ (𝑊:(0..^𝐿)⟶𝑆 → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 18 | iswrd 14480 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝑊:(0..^𝐿)⟶𝑆 → 𝑊 ∈ Word 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4296 ⟶wf 6507 (class class class)co 7387 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 ..^cfzo 13615 Word cword 14478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-word 14479 |
| This theorem is referenced by: iswrdb 14485 snopiswrd 14488 iswrdsymb 14496 iswrddm0 14503 ffz0iswrd 14506 wrdnval 14510 wrdred1 14525 ccatcl 14539 swrdcl 14610 revcl 14726 repsw 14740 repsdf2 14743 cshf1 14775 wrdco 14797 wrdlen2i 14908 pmtrdifwrdellem1 19411 psgnunilem5 19424 ablfaclem2 20018 ablfac2 20021 wrdupgr 29012 wrdumgr 29024 crctcshtrl 29753 wlkiswwlks2lem5 29803 wlkiswwlksupgr2 29807 clwlkclwwlklem2a 29927 upgriseupth 30136 wrdres 32856 wrdpmcl 32859 ccatws1f1o 32873 ccatws1f1olast 32874 wrdpmtrlast 33050 cycpmconjslem1 33111 1arithidomlem1 33506 1arithidomlem2 33507 1arithidom 33508 subiwrd 34376 sseqp1 34386 ofcccat 34534 signstf 34557 signshwrd 34580 lpadlem1 34668 frlmfzowrd 42490 frlmvscadiccat 42494 grtriclwlk3 47944 |
| Copyright terms: Public domain | W3C validator |