MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrdi Structured version   Visualization version   GIF version

Theorem iswrdi 14470
Description: A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
iswrdi (𝑊:(0..^𝐿)⟶𝑆𝑊 ∈ Word 𝑆)

Proof of Theorem iswrdi
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7410 . . . . 5 (𝑙 = 𝐿 → (0..^𝑙) = (0..^𝐿))
21feq2d 6694 . . . 4 (𝑙 = 𝐿 → (𝑊:(0..^𝑙)⟶𝑆𝑊:(0..^𝐿)⟶𝑆))
32rspcev 3604 . . 3 ((𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
4 0nn0 12486 . . . 4 0 ∈ ℕ0
5 fzo0n0 13685 . . . . . . . . 9 ((0..^𝐿) ≠ ∅ ↔ 𝐿 ∈ ℕ)
6 nnnn0 12478 . . . . . . . . 9 (𝐿 ∈ ℕ → 𝐿 ∈ ℕ0)
75, 6sylbi 216 . . . . . . . 8 ((0..^𝐿) ≠ ∅ → 𝐿 ∈ ℕ0)
87necon1bi 2961 . . . . . . 7 𝐿 ∈ ℕ0 → (0..^𝐿) = ∅)
9 fzo0 13657 . . . . . . 7 (0..^0) = ∅
108, 9eqtr4di 2782 . . . . . 6 𝐿 ∈ ℕ0 → (0..^𝐿) = (0..^0))
1110feq2d 6694 . . . . 5 𝐿 ∈ ℕ0 → (𝑊:(0..^𝐿)⟶𝑆𝑊:(0..^0)⟶𝑆))
1211biimpa 476 . . . 4 ((¬ 𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → 𝑊:(0..^0)⟶𝑆)
13 oveq2 7410 . . . . . 6 (𝑙 = 0 → (0..^𝑙) = (0..^0))
1413feq2d 6694 . . . . 5 (𝑙 = 0 → (𝑊:(0..^𝑙)⟶𝑆𝑊:(0..^0)⟶𝑆))
1514rspcev 3604 . . . 4 ((0 ∈ ℕ0𝑊:(0..^0)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
164, 12, 15sylancr 586 . . 3 ((¬ 𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
173, 16pm2.61ian 809 . 2 (𝑊:(0..^𝐿)⟶𝑆 → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
18 iswrd 14468 . 2 (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
1917, 18sylibr 233 1 (𝑊:(0..^𝐿)⟶𝑆𝑊 ∈ Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  wrex 3062  c0 4315  wf 6530  (class class class)co 7402  0cc0 11107  cn 12211  0cn0 12471  ..^cfzo 13628  Word cword 14466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-fzo 13629  df-word 14467
This theorem is referenced by:  iswrdb  14472  snopiswrd  14475  iswrdsymb  14483  iswrddm0  14490  ffz0iswrd  14493  wrdnval  14497  wrdred1  14512  ccatcl  14526  swrdcl  14597  revcl  14713  repsw  14727  repsdf2  14730  cshf1  14762  wrdco  14784  wrdlen2i  14895  pmtrdifwrdellem1  19397  psgnunilem5  19410  ablfaclem2  20004  ablfac2  20007  wrdupgr  28839  wrdumgr  28851  crctcshtrl  29572  wlkiswwlks2lem5  29622  wlkiswwlksupgr2  29626  clwlkclwwlklem2a  29746  upgriseupth  29955  wrdres  32596  cycpmconjslem1  32807  subiwrd  33904  sseqp1  33914  ofcccat  34074  signstf  34097  signshwrd  34120  lpadlem1  34208  frlmfzowrd  41611  frlmvscadiccat  41615
  Copyright terms: Public domain W3C validator