MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrdi Structured version   Visualization version   GIF version

Theorem iswrdi 14467
Description: A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
iswrdi (𝑊:(0..^𝐿)⟶𝑆𝑊 ∈ Word 𝑆)

Proof of Theorem iswrdi
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7416 . . . . 5 (𝑙 = 𝐿 → (0..^𝑙) = (0..^𝐿))
21feq2d 6703 . . . 4 (𝑙 = 𝐿 → (𝑊:(0..^𝑙)⟶𝑆𝑊:(0..^𝐿)⟶𝑆))
32rspcev 3612 . . 3 ((𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
4 0nn0 12486 . . . 4 0 ∈ ℕ0
5 fzo0n0 13683 . . . . . . . . 9 ((0..^𝐿) ≠ ∅ ↔ 𝐿 ∈ ℕ)
6 nnnn0 12478 . . . . . . . . 9 (𝐿 ∈ ℕ → 𝐿 ∈ ℕ0)
75, 6sylbi 216 . . . . . . . 8 ((0..^𝐿) ≠ ∅ → 𝐿 ∈ ℕ0)
87necon1bi 2969 . . . . . . 7 𝐿 ∈ ℕ0 → (0..^𝐿) = ∅)
9 fzo0 13655 . . . . . . 7 (0..^0) = ∅
108, 9eqtr4di 2790 . . . . . 6 𝐿 ∈ ℕ0 → (0..^𝐿) = (0..^0))
1110feq2d 6703 . . . . 5 𝐿 ∈ ℕ0 → (𝑊:(0..^𝐿)⟶𝑆𝑊:(0..^0)⟶𝑆))
1211biimpa 477 . . . 4 ((¬ 𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → 𝑊:(0..^0)⟶𝑆)
13 oveq2 7416 . . . . . 6 (𝑙 = 0 → (0..^𝑙) = (0..^0))
1413feq2d 6703 . . . . 5 (𝑙 = 0 → (𝑊:(0..^𝑙)⟶𝑆𝑊:(0..^0)⟶𝑆))
1514rspcev 3612 . . . 4 ((0 ∈ ℕ0𝑊:(0..^0)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
164, 12, 15sylancr 587 . . 3 ((¬ 𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
173, 16pm2.61ian 810 . 2 (𝑊:(0..^𝐿)⟶𝑆 → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
18 iswrd 14465 . 2 (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
1917, 18sylibr 233 1 (𝑊:(0..^𝐿)⟶𝑆𝑊 ∈ Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wrex 3070  c0 4322  wf 6539  (class class class)co 7408  0cc0 11109  cn 12211  0cn0 12471  ..^cfzo 13626  Word cword 14463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-word 14464
This theorem is referenced by:  iswrdb  14469  snopiswrd  14472  iswrdsymb  14480  iswrddm0  14487  ffz0iswrd  14490  wrdnval  14494  wrdred1  14509  ccatcl  14523  swrdcl  14594  revcl  14710  repsw  14724  repsdf2  14727  cshf1  14759  wrdco  14781  wrdlen2i  14892  pmtrdifwrdellem1  19348  psgnunilem5  19361  ablfaclem2  19955  ablfac2  19958  wrdupgr  28342  wrdumgr  28354  crctcshtrl  29074  wlkiswwlks2lem5  29124  wlkiswwlksupgr2  29128  clwlkclwwlklem2a  29248  upgriseupth  29457  wrdres  32098  cycpmconjslem1  32308  subiwrd  33379  sseqp1  33389  ofcccat  33549  signstf  33572  signshwrd  33595  lpadlem1  33684  frlmfzowrd  41078  frlmvscadiccat  41082
  Copyright terms: Public domain W3C validator