![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > thlleOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of thlle 21739 as of 11-Nov-2024. Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlle.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
thlleOLD | ⊢ ≤ = (le‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
2 | pleid 17426 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
3 | 10re 12777 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
4 | 1nn0 12569 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
5 | 0nn0 12568 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
6 | 1nn 12304 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
7 | 0lt1 11812 | . . . . . . . 8 ⊢ 0 < 1 | |
8 | 4, 5, 6, 7 | declt 12786 | . . . . . . 7 ⊢ ;10 < ;11 |
9 | 3, 8 | ltneii 11403 | . . . . . 6 ⊢ ;10 ≠ ;11 |
10 | plendx 17425 | . . . . . . 7 ⊢ (le‘ndx) = ;10 | |
11 | ocndx 17440 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
12 | 10, 11 | neeq12i 3013 | . . . . . 6 ⊢ ((le‘ndx) ≠ (oc‘ndx) ↔ ;10 ≠ ;11) |
13 | 9, 12 | mpbir 231 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) |
14 | 2, 13 | setsnid 17256 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
15 | 1, 14 | eqtri 2768 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
16 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
17 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
18 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
19 | eqid 2740 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
20 | 16, 17, 18, 19 | thlval 21736 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
21 | 20 | fveq2d 6924 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
22 | 15, 21 | eqtr4id 2799 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
23 | 2 | str0 17236 | . . 3 ⊢ ∅ = (le‘∅) |
24 | 17 | fvexi 6934 | . . . . . 6 ⊢ 𝐶 ∈ V |
25 | 18 | ipolerval 18602 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
27 | 1, 26 | eqtr4i 2771 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
28 | opabn0 5572 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
29 | vex 3492 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
30 | vex 3492 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
31 | 29, 30 | prss 4845 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
32 | elfvex 6958 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
33 | 32, 17 | eleq2s 2862 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
34 | 33 | ad2antrr 725 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
35 | 31, 34 | sylanbr 581 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
36 | 35 | exlimivv 1931 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
37 | 28, 36 | sylbi 217 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
38 | 37 | necon1bi 2975 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
39 | 27, 38 | eqtrid 2792 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
40 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
41 | 16, 40 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
42 | 41 | fveq2d 6924 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
43 | 23, 39, 42 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
44 | 22, 43 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 {cpr 4650 〈cop 4654 {copab 5228 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 ;cdc 12758 sSet csts 17210 ndxcnx 17240 lecple 17318 occoc 17319 toInccipo 18597 ocvcocv 21701 ClSubSpccss 21702 toHLcthl 21703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-tset 17330 df-ple 17331 df-ocomp 17332 df-ipo 18598 df-thl 21706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |