Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thlleOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of thlle 20983 as of 11-Nov-2024. Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlle.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
thlleOLD | ⊢ ≤ = (le‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
2 | pleid 17151 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
3 | 10re 12535 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
4 | 1nn0 12328 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
5 | 0nn0 12327 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
6 | 1nn 12063 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
7 | 0lt1 11576 | . . . . . . . 8 ⊢ 0 < 1 | |
8 | 4, 5, 6, 7 | declt 12544 | . . . . . . 7 ⊢ ;10 < ;11 |
9 | 3, 8 | ltneii 11167 | . . . . . 6 ⊢ ;10 ≠ ;11 |
10 | plendx 17150 | . . . . . . 7 ⊢ (le‘ndx) = ;10 | |
11 | ocndx 17165 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
12 | 10, 11 | neeq12i 3007 | . . . . . 6 ⊢ ((le‘ndx) ≠ (oc‘ndx) ↔ ;10 ≠ ;11) |
13 | 9, 12 | mpbir 230 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) |
14 | 2, 13 | setsnid 16984 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
15 | 1, 14 | eqtri 2764 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
16 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
17 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
18 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
19 | eqid 2736 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
20 | 16, 17, 18, 19 | thlval 20980 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
21 | 20 | fveq2d 6815 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
22 | 15, 21 | eqtr4id 2795 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
23 | 2 | str0 16964 | . . 3 ⊢ ∅ = (le‘∅) |
24 | 17 | fvexi 6825 | . . . . . 6 ⊢ 𝐶 ∈ V |
25 | 18 | ipolerval 18324 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
27 | 1, 26 | eqtr4i 2767 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
28 | opabn0 5485 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
29 | vex 3444 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
30 | vex 3444 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
31 | 29, 30 | prss 4764 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
32 | elfvex 6846 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
33 | 32, 17 | eleq2s 2855 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
34 | 33 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
35 | 31, 34 | sylanbr 582 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
36 | 35 | exlimivv 1934 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
37 | 28, 36 | sylbi 216 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
38 | 37 | necon1bi 2969 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
39 | 27, 38 | eqtrid 2788 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
40 | fvprc 6803 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
41 | 16, 40 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
42 | 41 | fveq2d 6815 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
43 | 23, 39, 42 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
44 | 22, 43 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2940 Vcvv 3440 ⊆ wss 3896 ∅c0 4266 {cpr 4572 〈cop 4576 {copab 5148 ‘cfv 6465 (class class class)co 7316 0cc0 10950 1c1 10951 ;cdc 12516 sSet csts 16938 ndxcnx 16968 lecple 17043 occoc 17044 toInccipo 18319 ocvcocv 20945 ClSubSpccss 20946 toHLcthl 20947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-fz 13319 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-tset 17055 df-ple 17056 df-ocomp 17057 df-ipo 18320 df-thl 20950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |