Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thlleOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of thlle 20893 as of 11-Nov-2024. Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlle.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
thlleOLD | ⊢ ≤ = (le‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
2 | pleid 17067 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
3 | 10re 12447 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
4 | 1nn0 12241 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
5 | 0nn0 12240 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
6 | 1nn 11976 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
7 | 0lt1 11489 | . . . . . . . 8 ⊢ 0 < 1 | |
8 | 4, 5, 6, 7 | declt 12456 | . . . . . . 7 ⊢ ;10 < ;11 |
9 | 3, 8 | ltneii 11080 | . . . . . 6 ⊢ ;10 ≠ ;11 |
10 | plendx 17066 | . . . . . . 7 ⊢ (le‘ndx) = ;10 | |
11 | ocndx 17081 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
12 | 10, 11 | neeq12i 3012 | . . . . . 6 ⊢ ((le‘ndx) ≠ (oc‘ndx) ↔ ;10 ≠ ;11) |
13 | 9, 12 | mpbir 230 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) |
14 | 2, 13 | setsnid 16900 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
15 | 1, 14 | eqtri 2768 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
16 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
17 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
18 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
19 | eqid 2740 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
20 | 16, 17, 18, 19 | thlval 20890 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
21 | 20 | fveq2d 6773 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
22 | 15, 21 | eqtr4id 2799 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
23 | 2 | str0 16880 | . . 3 ⊢ ∅ = (le‘∅) |
24 | 17 | fvexi 6783 | . . . . . 6 ⊢ 𝐶 ∈ V |
25 | 18 | ipolerval 18240 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
27 | 1, 26 | eqtr4i 2771 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
28 | opabn0 5468 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
29 | vex 3435 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
30 | vex 3435 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
31 | 29, 30 | prss 4759 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
32 | elfvex 6802 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
33 | 32, 17 | eleq2s 2859 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
34 | 33 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
35 | 31, 34 | sylanbr 582 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
36 | 35 | exlimivv 1939 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
37 | 28, 36 | sylbi 216 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
38 | 37 | necon1bi 2974 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
39 | 27, 38 | eqtrid 2792 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
40 | fvprc 6761 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
41 | 16, 40 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
42 | 41 | fveq2d 6773 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
43 | 23, 39, 42 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
44 | 22, 43 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ≠ wne 2945 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 {cpr 4569 〈cop 4573 {copab 5141 ‘cfv 6431 (class class class)co 7269 0cc0 10864 1c1 10865 ;cdc 12428 sSet csts 16854 ndxcnx 16884 lecple 16959 occoc 16960 toInccipo 18235 ocvcocv 20855 ClSubSpccss 20856 toHLcthl 20857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-z 12312 df-dec 12429 df-uz 12574 df-fz 13231 df-struct 16838 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-tset 16971 df-ple 16972 df-ocomp 16973 df-ipo 18236 df-thl 20860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |