![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > thlleOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of thlle 21623 as of 11-Nov-2024. Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlle.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
thlleOLD | ⊢ ≤ = (le‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
2 | pleid 17341 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
3 | 10re 12720 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
4 | 1nn0 12512 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
5 | 0nn0 12511 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
6 | 1nn 12247 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
7 | 0lt1 11760 | . . . . . . . 8 ⊢ 0 < 1 | |
8 | 4, 5, 6, 7 | declt 12729 | . . . . . . 7 ⊢ ;10 < ;11 |
9 | 3, 8 | ltneii 11351 | . . . . . 6 ⊢ ;10 ≠ ;11 |
10 | plendx 17340 | . . . . . . 7 ⊢ (le‘ndx) = ;10 | |
11 | ocndx 17355 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
12 | 10, 11 | neeq12i 3003 | . . . . . 6 ⊢ ((le‘ndx) ≠ (oc‘ndx) ↔ ;10 ≠ ;11) |
13 | 9, 12 | mpbir 230 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) |
14 | 2, 13 | setsnid 17171 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
15 | 1, 14 | eqtri 2756 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
16 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
17 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
18 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
19 | eqid 2728 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
20 | 16, 17, 18, 19 | thlval 21620 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
21 | 20 | fveq2d 6895 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
22 | 15, 21 | eqtr4id 2787 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
23 | 2 | str0 17151 | . . 3 ⊢ ∅ = (le‘∅) |
24 | 17 | fvexi 6905 | . . . . . 6 ⊢ 𝐶 ∈ V |
25 | 18 | ipolerval 18517 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
26 | 24, 25 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
27 | 1, 26 | eqtr4i 2759 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
28 | opabn0 5549 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
29 | vex 3474 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
30 | vex 3474 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
31 | 29, 30 | prss 4819 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
32 | elfvex 6929 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
33 | 32, 17 | eleq2s 2847 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
34 | 33 | ad2antrr 725 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
35 | 31, 34 | sylanbr 581 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
36 | 35 | exlimivv 1928 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
37 | 28, 36 | sylbi 216 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
38 | 37 | necon1bi 2965 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
39 | 27, 38 | eqtrid 2780 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
40 | fvprc 6883 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
41 | 16, 40 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
42 | 41 | fveq2d 6895 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
43 | 23, 39, 42 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
44 | 22, 43 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 ⊆ wss 3945 ∅c0 4318 {cpr 4626 〈cop 4630 {copab 5204 ‘cfv 6542 (class class class)co 7414 0cc0 11132 1c1 11133 ;cdc 12701 sSet csts 17125 ndxcnx 17155 lecple 17233 occoc 17234 toInccipo 18512 ocvcocv 21585 ClSubSpccss 21586 toHLcthl 21587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-tset 17245 df-ple 17246 df-ocomp 17247 df-ipo 18513 df-thl 21590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |