Step | Hyp | Ref
| Expression |
1 | | thlle.l |
. . . 4
β’ β€ =
(leβπΌ) |
2 | | pleid 17310 |
. . . . 5
β’ le = Slot
(leβndx) |
3 | | 10re 12692 |
. . . . . . 7
β’ ;10 β β |
4 | | 1nn0 12484 |
. . . . . . . 8
β’ 1 β
β0 |
5 | | 0nn0 12483 |
. . . . . . . 8
β’ 0 β
β0 |
6 | | 1nn 12219 |
. . . . . . . 8
β’ 1 β
β |
7 | | 0lt1 11732 |
. . . . . . . 8
β’ 0 <
1 |
8 | 4, 5, 6, 7 | declt 12701 |
. . . . . . 7
β’ ;10 < ;11 |
9 | 3, 8 | ltneii 11323 |
. . . . . 6
β’ ;10 β ;11 |
10 | | plendx 17309 |
. . . . . . 7
β’
(leβndx) = ;10 |
11 | | ocndx 17324 |
. . . . . . 7
β’
(ocβndx) = ;11 |
12 | 10, 11 | neeq12i 2999 |
. . . . . 6
β’
((leβndx) β (ocβndx) β ;10 β ;11) |
13 | 9, 12 | mpbir 230 |
. . . . 5
β’
(leβndx) β (ocβndx) |
14 | 2, 13 | setsnid 17140 |
. . . 4
β’
(leβπΌ) =
(leβ(πΌ sSet
β¨(ocβndx), (ocvβπ)β©)) |
15 | 1, 14 | eqtri 2752 |
. . 3
β’ β€ =
(leβ(πΌ sSet
β¨(ocβndx), (ocvβπ)β©)) |
16 | | thlval.k |
. . . . 5
β’ πΎ = (toHLβπ) |
17 | | thlbas.c |
. . . . 5
β’ πΆ = (ClSubSpβπ) |
18 | | thlle.i |
. . . . 5
β’ πΌ = (toIncβπΆ) |
19 | | eqid 2724 |
. . . . 5
β’
(ocvβπ) =
(ocvβπ) |
20 | 16, 17, 18, 19 | thlval 21555 |
. . . 4
β’ (π β V β πΎ = (πΌ sSet β¨(ocβndx), (ocvβπ)β©)) |
21 | 20 | fveq2d 6885 |
. . 3
β’ (π β V β (leβπΎ) = (leβ(πΌ sSet β¨(ocβndx), (ocvβπ)β©))) |
22 | 15, 21 | eqtr4id 2783 |
. 2
β’ (π β V β β€ =
(leβπΎ)) |
23 | 2 | str0 17120 |
. . 3
β’ β
=
(leββ
) |
24 | 17 | fvexi 6895 |
. . . . . 6
β’ πΆ β V |
25 | 18 | ipolerval 18486 |
. . . . . 6
β’ (πΆ β V β {β¨π₯, π¦β© β£ ({π₯, π¦} β πΆ β§ π₯ β π¦)} = (leβπΌ)) |
26 | 24, 25 | ax-mp 5 |
. . . . 5
β’
{β¨π₯, π¦β© β£ ({π₯, π¦} β πΆ β§ π₯ β π¦)} = (leβπΌ) |
27 | 1, 26 | eqtr4i 2755 |
. . . 4
β’ β€ =
{β¨π₯, π¦β© β£ ({π₯, π¦} β πΆ β§ π₯ β π¦)} |
28 | | opabn0 5543 |
. . . . . 6
β’
({β¨π₯, π¦β© β£ ({π₯, π¦} β πΆ β§ π₯ β π¦)} β β
β βπ₯βπ¦({π₯, π¦} β πΆ β§ π₯ β π¦)) |
29 | | vex 3470 |
. . . . . . . . 9
β’ π₯ β V |
30 | | vex 3470 |
. . . . . . . . 9
β’ π¦ β V |
31 | 29, 30 | prss 4815 |
. . . . . . . 8
β’ ((π₯ β πΆ β§ π¦ β πΆ) β {π₯, π¦} β πΆ) |
32 | | elfvex 6919 |
. . . . . . . . . 10
β’ (π₯ β (ClSubSpβπ) β π β V) |
33 | 32, 17 | eleq2s 2843 |
. . . . . . . . 9
β’ (π₯ β πΆ β π β V) |
34 | 33 | ad2antrr 723 |
. . . . . . . 8
β’ (((π₯ β πΆ β§ π¦ β πΆ) β§ π₯ β π¦) β π β V) |
35 | 31, 34 | sylanbr 581 |
. . . . . . 7
β’ (({π₯, π¦} β πΆ β§ π₯ β π¦) β π β V) |
36 | 35 | exlimivv 1927 |
. . . . . 6
β’
(βπ₯βπ¦({π₯, π¦} β πΆ β§ π₯ β π¦) β π β V) |
37 | 28, 36 | sylbi 216 |
. . . . 5
β’
({β¨π₯, π¦β© β£ ({π₯, π¦} β πΆ β§ π₯ β π¦)} β β
β π β V) |
38 | 37 | necon1bi 2961 |
. . . 4
β’ (Β¬
π β V β
{β¨π₯, π¦β© β£ ({π₯, π¦} β πΆ β§ π₯ β π¦)} = β
) |
39 | 27, 38 | eqtrid 2776 |
. . 3
β’ (Β¬
π β V β β€ =
β
) |
40 | | fvprc 6873 |
. . . . 5
β’ (Β¬
π β V β
(toHLβπ) =
β
) |
41 | 16, 40 | eqtrid 2776 |
. . . 4
β’ (Β¬
π β V β πΎ = β
) |
42 | 41 | fveq2d 6885 |
. . 3
β’ (Β¬
π β V β
(leβπΎ) =
(leββ
)) |
43 | 23, 39, 42 | 3eqtr4a 2790 |
. 2
β’ (Β¬
π β V β β€ =
(leβπΎ)) |
44 | 22, 43 | pm2.61i 182 |
1
β’ β€ =
(leβπΎ) |