Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1stnpr | Structured version Visualization version GIF version |
Description: Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
Ref | Expression |
---|---|
1stnpr | ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stval 7806 | . 2 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | |
2 | dmsnn0 6099 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
3 | 2 | biimpri 227 | . . . . 5 ⊢ (dom {𝐴} ≠ ∅ → 𝐴 ∈ (V × V)) |
4 | 3 | necon1bi 2971 | . . . 4 ⊢ (¬ 𝐴 ∈ (V × V) → dom {𝐴} = ∅) |
5 | 4 | unieqd 4850 | . . 3 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ dom {𝐴} = ∪ ∅) |
6 | uni0 4866 | . . 3 ⊢ ∪ ∅ = ∅ | |
7 | 5, 6 | eqtrdi 2795 | . 2 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ dom {𝐴} = ∅) |
8 | 1, 7 | eqtrid 2790 | 1 ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 {csn 4558 ∪ cuni 4836 × cxp 5578 dom cdm 5580 ‘cfv 6418 1st c1st 7802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |