| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1stnpr | Structured version Visualization version GIF version | ||
| Description: Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| 1stnpr | ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stval 7923 | . 2 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | |
| 2 | dmsnn0 6154 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
| 3 | 2 | biimpri 228 | . . . . 5 ⊢ (dom {𝐴} ≠ ∅ → 𝐴 ∈ (V × V)) |
| 4 | 3 | necon1bi 2956 | . . . 4 ⊢ (¬ 𝐴 ∈ (V × V) → dom {𝐴} = ∅) |
| 5 | 4 | unieqd 4869 | . . 3 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ dom {𝐴} = ∪ ∅) |
| 6 | uni0 4884 | . . 3 ⊢ ∪ ∅ = ∅ | |
| 7 | 5, 6 | eqtrdi 2782 | . 2 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ dom {𝐴} = ∅) |
| 8 | 1, 7 | eqtrid 2778 | 1 ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 {csn 4573 ∪ cuni 4856 × cxp 5612 dom cdm 5614 ‘cfv 6481 1st c1st 7919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |