![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stnpr | Structured version Visualization version GIF version |
Description: Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
Ref | Expression |
---|---|
1stnpr | ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stval 7977 | . 2 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | |
2 | dmsnn0 6207 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
3 | 2 | biimpri 227 | . . . . 5 ⊢ (dom {𝐴} ≠ ∅ → 𝐴 ∈ (V × V)) |
4 | 3 | necon1bi 2970 | . . . 4 ⊢ (¬ 𝐴 ∈ (V × V) → dom {𝐴} = ∅) |
5 | 4 | unieqd 4923 | . . 3 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ dom {𝐴} = ∪ ∅) |
6 | uni0 4940 | . . 3 ⊢ ∪ ∅ = ∅ | |
7 | 5, 6 | eqtrdi 2789 | . 2 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ dom {𝐴} = ∅) |
8 | 1, 7 | eqtrid 2785 | 1 ⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ∅c0 4323 {csn 4629 ∪ cuni 4909 × cxp 5675 dom cdm 5677 ‘cfv 6544 1st c1st 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |