Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thlle | Structured version Visualization version GIF version |
Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
thlle.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
thlle | ⊢ ≤ = (le‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
2 | pleid 17077 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
3 | plendxnocndx 17094 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) | |
4 | 2, 3 | setsnid 16910 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
5 | 1, 4 | eqtri 2766 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
6 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
7 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
8 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
9 | eqid 2738 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
10 | 6, 7, 8, 9 | thlval 20900 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
11 | 10 | fveq2d 6778 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
12 | 5, 11 | eqtr4id 2797 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
13 | 2 | str0 16890 | . . 3 ⊢ ∅ = (le‘∅) |
14 | 7 | fvexi 6788 | . . . . . 6 ⊢ 𝐶 ∈ V |
15 | 8 | ipolerval 18250 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
17 | 1, 16 | eqtr4i 2769 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
18 | opabn0 5466 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
19 | vex 3436 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
20 | vex 3436 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
21 | 19, 20 | prss 4753 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
22 | elfvex 6807 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
23 | 22, 7 | eleq2s 2857 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
24 | 23 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
25 | 21, 24 | sylanbr 582 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
26 | 25 | exlimivv 1935 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
27 | 18, 26 | sylbi 216 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
28 | 27 | necon1bi 2972 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
29 | 17, 28 | eqtrid 2790 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
30 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
31 | 6, 30 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
32 | 31 | fveq2d 6778 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
33 | 13, 29, 32 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
34 | 12, 33 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 {cpr 4563 〈cop 4567 {copab 5136 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 ndxcnx 16894 lecple 16969 occoc 16970 toInccipo 18245 ocvcocv 20865 ClSubSpccss 20866 toHLcthl 20867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-tset 16981 df-ple 16982 df-ocomp 16983 df-ipo 18246 df-thl 20870 |
This theorem is referenced by: thlleval 20905 |
Copyright terms: Public domain | W3C validator |