MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thlle Structured version   Visualization version   GIF version

Theorem thlle 21604
Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.)
Hypotheses
Ref Expression
thlval.k 𝐾 = (toHL‘𝑊)
thlbas.c 𝐶 = (ClSubSp‘𝑊)
thlle.i 𝐼 = (toInc‘𝐶)
thlle.l = (le‘𝐼)
Assertion
Ref Expression
thlle = (le‘𝐾)

Proof of Theorem thlle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thlle.l . . . 4 = (le‘𝐼)
2 pleid 17271 . . . . 5 le = Slot (le‘ndx)
3 plendxnocndx 17288 . . . . 5 (le‘ndx) ≠ (oc‘ndx)
42, 3setsnid 17119 . . . 4 (le‘𝐼) = (le‘(𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩))
51, 4eqtri 2752 . . 3 = (le‘(𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩))
6 thlval.k . . . . 5 𝐾 = (toHL‘𝑊)
7 thlbas.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
8 thlle.i . . . . 5 𝐼 = (toInc‘𝐶)
9 eqid 2729 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
106, 7, 8, 9thlval 21602 . . . 4 (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩))
1110fveq2d 6826 . . 3 (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩)))
125, 11eqtr4id 2783 . 2 (𝑊 ∈ V → = (le‘𝐾))
132str0 17100 . . 3 ∅ = (le‘∅)
147fvexi 6836 . . . . . 6 𝐶 ∈ V
158ipolerval 18438 . . . . . 6 (𝐶 ∈ V → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} = (le‘𝐼))
1614, 15ax-mp 5 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} = (le‘𝐼)
171, 16eqtr4i 2755 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)}
18 opabn0 5496 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} ≠ ∅ ↔ ∃𝑥𝑦({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦))
19 vex 3440 . . . . . . . . 9 𝑥 ∈ V
20 vex 3440 . . . . . . . . 9 𝑦 ∈ V
2119, 20prss 4771 . . . . . . . 8 ((𝑥𝐶𝑦𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶)
22 elfvex 6858 . . . . . . . . . 10 (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V)
2322, 7eleq2s 2846 . . . . . . . . 9 (𝑥𝐶𝑊 ∈ V)
2423ad2antrr 726 . . . . . . . 8 (((𝑥𝐶𝑦𝐶) ∧ 𝑥𝑦) → 𝑊 ∈ V)
2521, 24sylanbr 582 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦) → 𝑊 ∈ V)
2625exlimivv 1932 . . . . . 6 (∃𝑥𝑦({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦) → 𝑊 ∈ V)
2718, 26sylbi 217 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} ≠ ∅ → 𝑊 ∈ V)
2827necon1bi 2953 . . . 4 𝑊 ∈ V → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} = ∅)
2917, 28eqtrid 2776 . . 3 𝑊 ∈ V → = ∅)
30 fvprc 6814 . . . . 5 𝑊 ∈ V → (toHL‘𝑊) = ∅)
316, 30eqtrid 2776 . . . 4 𝑊 ∈ V → 𝐾 = ∅)
3231fveq2d 6826 . . 3 𝑊 ∈ V → (le‘𝐾) = (le‘∅))
3313, 29, 323eqtr4a 2790 . 2 𝑊 ∈ V → = (le‘𝐾))
3412, 33pm2.61i 182 1 = (le‘𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3436  wss 3903  c0 4284  {cpr 4579  cop 4583  {copab 5154  cfv 6482  (class class class)co 7349   sSet csts 17074  ndxcnx 17104  lecple 17168  occoc 17169  toInccipo 18433  ocvcocv 21567  ClSubSpccss 21568  toHLcthl 21569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ipo 18434  df-thl 21572
This theorem is referenced by:  thlleval  21605
  Copyright terms: Public domain W3C validator