| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlle | Structured version Visualization version GIF version | ||
| Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
| thlle.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| thlle | ⊢ ≤ = (le‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
| 2 | pleid 17381 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
| 3 | plendxnocndx 17398 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) | |
| 4 | 2, 3 | setsnid 17227 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 5 | 1, 4 | eqtri 2758 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 6 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 7 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 8 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
| 9 | eqid 2735 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 10 | 6, 7, 8, 9 | thlval 21655 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 11 | 10 | fveq2d 6880 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
| 12 | 5, 11 | eqtr4id 2789 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
| 13 | 2 | str0 17208 | . . 3 ⊢ ∅ = (le‘∅) |
| 14 | 7 | fvexi 6890 | . . . . . 6 ⊢ 𝐶 ∈ V |
| 15 | 8 | ipolerval 18542 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
| 17 | 1, 16 | eqtr4i 2761 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
| 18 | opabn0 5528 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
| 19 | vex 3463 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 20 | vex 3463 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 21 | 19, 20 | prss 4796 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
| 22 | elfvex 6914 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
| 23 | 22, 7 | eleq2s 2852 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
| 24 | 23 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 25 | 21, 24 | sylanbr 582 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 26 | 25 | exlimivv 1932 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 27 | 18, 26 | sylbi 217 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
| 28 | 27 | necon1bi 2960 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
| 29 | 17, 28 | eqtrid 2782 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
| 30 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 31 | 6, 30 | eqtrid 2782 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 32 | 31 | fveq2d 6880 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
| 33 | 13, 29, 32 | 3eqtr4a 2796 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
| 34 | 12, 33 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 {cpr 4603 〈cop 4607 {copab 5181 ‘cfv 6531 (class class class)co 7405 sSet csts 17182 ndxcnx 17212 lecple 17278 occoc 17279 toInccipo 18537 ocvcocv 21620 ClSubSpccss 21621 toHLcthl 21622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-tset 17290 df-ple 17291 df-ocomp 17292 df-ipo 18538 df-thl 21625 |
| This theorem is referenced by: thlleval 21658 |
| Copyright terms: Public domain | W3C validator |