MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thlle Structured version   Visualization version   GIF version

Theorem thlle 20405
Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.)
Hypotheses
Ref Expression
thlval.k 𝐾 = (toHL‘𝑊)
thlbas.c 𝐶 = (ClSubSp‘𝑊)
thlle.i 𝐼 = (toInc‘𝐶)
thlle.l = (le‘𝐼)
Assertion
Ref Expression
thlle = (le‘𝐾)

Proof of Theorem thlle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thlval.k . . . . 5 𝐾 = (toHL‘𝑊)
2 thlbas.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
3 thlle.i . . . . 5 𝐼 = (toInc‘𝐶)
4 eqid 2826 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
51, 2, 3, 4thlval 20403 . . . 4 (𝑊 ∈ V → 𝐾 = (𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩))
65fveq2d 6438 . . 3 (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩)))
7 thlle.l . . . 4 = (le‘𝐼)
8 pleid 16408 . . . . 5 le = Slot (le‘ndx)
9 10re 11841 . . . . . . 7 10 ∈ ℝ
10 1nn0 11637 . . . . . . . 8 1 ∈ ℕ0
11 0nn0 11636 . . . . . . . 8 0 ∈ ℕ0
12 1nn 11364 . . . . . . . 8 1 ∈ ℕ
13 0lt1 10875 . . . . . . . 8 0 < 1
1410, 11, 12, 13declt 11851 . . . . . . 7 10 < 11
159, 14ltneii 10470 . . . . . 6 10 ≠ 11
16 plendx 16407 . . . . . . 7 (le‘ndx) = 10
17 ocndx 16414 . . . . . . 7 (oc‘ndx) = 11
1816, 17neeq12i 3066 . . . . . 6 ((le‘ndx) ≠ (oc‘ndx) ↔ 10 ≠ 11)
1915, 18mpbir 223 . . . . 5 (le‘ndx) ≠ (oc‘ndx)
208, 19setsnid 16279 . . . 4 (le‘𝐼) = (le‘(𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩))
217, 20eqtri 2850 . . 3 = (le‘(𝐼 sSet ⟨(oc‘ndx), (ocv‘𝑊)⟩))
226, 21syl6reqr 2881 . 2 (𝑊 ∈ V → = (le‘𝐾))
238str0 16275 . . 3 ∅ = (le‘∅)
242fvexi 6448 . . . . . 6 𝐶 ∈ V
253ipolerval 17510 . . . . . 6 (𝐶 ∈ V → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} = (le‘𝐼))
2624, 25ax-mp 5 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} = (le‘𝐼)
277, 26eqtr4i 2853 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)}
28 opabn0 5233 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} ≠ ∅ ↔ ∃𝑥𝑦({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦))
29 vex 3418 . . . . . . . . 9 𝑥 ∈ V
30 vex 3418 . . . . . . . . 9 𝑦 ∈ V
3129, 30prss 4570 . . . . . . . 8 ((𝑥𝐶𝑦𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶)
32 elfvex 6468 . . . . . . . . . 10 (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V)
3332, 2eleq2s 2925 . . . . . . . . 9 (𝑥𝐶𝑊 ∈ V)
3433ad2antrr 719 . . . . . . . 8 (((𝑥𝐶𝑦𝐶) ∧ 𝑥𝑦) → 𝑊 ∈ V)
3531, 34sylanbr 579 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦) → 𝑊 ∈ V)
3635exlimivv 2033 . . . . . 6 (∃𝑥𝑦({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦) → 𝑊 ∈ V)
3728, 36sylbi 209 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} ≠ ∅ → 𝑊 ∈ V)
3837necon1bi 3028 . . . 4 𝑊 ∈ V → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐶𝑥𝑦)} = ∅)
3927, 38syl5eq 2874 . . 3 𝑊 ∈ V → = ∅)
40 fvprc 6427 . . . . 5 𝑊 ∈ V → (toHL‘𝑊) = ∅)
411, 40syl5eq 2874 . . . 4 𝑊 ∈ V → 𝐾 = ∅)
4241fveq2d 6438 . . 3 𝑊 ∈ V → (le‘𝐾) = (le‘∅))
4323, 39, 423eqtr4a 2888 . 2 𝑊 ∈ V → = (le‘𝐾))
4422, 43pm2.61i 177 1 = (le‘𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386   = wceq 1658  wex 1880  wcel 2166  wne 3000  Vcvv 3415  wss 3799  c0 4145  {cpr 4400  cop 4404  {copab 4936  cfv 6124  (class class class)co 6906  0cc0 10253  1c1 10254  cdc 11822  ndxcnx 16220   sSet csts 16221  lecple 16313  occoc 16314  toInccipo 17505  ocvcocv 20368  ClSubSpccss 20369  toHLcthl 20370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-fz 12621  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-tset 16325  df-ple 16326  df-ocomp 16327  df-ipo 17506  df-thl 20373
This theorem is referenced by:  thlleval  20406
  Copyright terms: Public domain W3C validator