| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlle | Structured version Visualization version GIF version | ||
| Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
| thlle.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| thlle | ⊢ ≤ = (le‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
| 2 | pleid 17337 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
| 3 | plendxnocndx 17354 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) | |
| 4 | 2, 3 | setsnid 17185 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 5 | 1, 4 | eqtri 2753 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 6 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 7 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 8 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 10 | 6, 7, 8, 9 | thlval 21611 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 11 | 10 | fveq2d 6865 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
| 12 | 5, 11 | eqtr4id 2784 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
| 13 | 2 | str0 17166 | . . 3 ⊢ ∅ = (le‘∅) |
| 14 | 7 | fvexi 6875 | . . . . . 6 ⊢ 𝐶 ∈ V |
| 15 | 8 | ipolerval 18498 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
| 17 | 1, 16 | eqtr4i 2756 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
| 18 | opabn0 5516 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
| 19 | vex 3454 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 20 | vex 3454 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 21 | 19, 20 | prss 4787 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
| 22 | elfvex 6899 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
| 23 | 22, 7 | eleq2s 2847 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
| 24 | 23 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 25 | 21, 24 | sylanbr 582 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 26 | 25 | exlimivv 1932 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 27 | 18, 26 | sylbi 217 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
| 28 | 27 | necon1bi 2954 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
| 29 | 17, 28 | eqtrid 2777 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
| 30 | fvprc 6853 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 31 | 6, 30 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 32 | 31 | fveq2d 6865 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
| 33 | 13, 29, 32 | 3eqtr4a 2791 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
| 34 | 12, 33 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 {cpr 4594 〈cop 4598 {copab 5172 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 lecple 17234 occoc 17235 toInccipo 18493 ocvcocv 21576 ClSubSpccss 21577 toHLcthl 21578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-tset 17246 df-ple 17247 df-ocomp 17248 df-ipo 18494 df-thl 21581 |
| This theorem is referenced by: thlleval 21614 |
| Copyright terms: Public domain | W3C validator |