| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > thlle | Structured version Visualization version GIF version | ||
| Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
| thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| thlle.i | ⊢ 𝐼 = (toInc‘𝐶) |
| thlle.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| thlle | ⊢ ≤ = (le‘𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlle.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
| 2 | pleid 17306 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
| 3 | plendxnocndx 17323 | . . . . 5 ⊢ (le‘ndx) ≠ (oc‘ndx) | |
| 4 | 2, 3 | setsnid 17154 | . . . 4 ⊢ (le‘𝐼) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 5 | 1, 4 | eqtri 2752 | . . 3 ⊢ ≤ = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 6 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
| 7 | thlbas.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 8 | thlle.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐶) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 10 | 6, 7, 8, 9 | thlval 21637 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = (𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
| 11 | 10 | fveq2d 6844 | . . 3 ⊢ (𝑊 ∈ V → (le‘𝐾) = (le‘(𝐼 sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
| 12 | 5, 11 | eqtr4id 2783 | . 2 ⊢ (𝑊 ∈ V → ≤ = (le‘𝐾)) |
| 13 | 2 | str0 17135 | . . 3 ⊢ ∅ = (le‘∅) |
| 14 | 7 | fvexi 6854 | . . . . . 6 ⊢ 𝐶 ∈ V |
| 15 | 8 | ipolerval 18473 | . . . . . 6 ⊢ (𝐶 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼) |
| 17 | 1, 16 | eqtr4i 2755 | . . . 4 ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} |
| 18 | opabn0 5508 | . . . . . 6 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ ↔ ∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)) | |
| 19 | vex 3448 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 20 | vex 3448 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 21 | 19, 20 | prss 4780 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ↔ {𝑥, 𝑦} ⊆ 𝐶) |
| 22 | elfvex 6878 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ V) | |
| 23 | 22, 7 | eleq2s 2846 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐶 → 𝑊 ∈ V) |
| 24 | 23 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 25 | 21, 24 | sylanbr 582 | . . . . . . 7 ⊢ (({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 26 | 25 | exlimivv 1932 | . . . . . 6 ⊢ (∃𝑥∃𝑦({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦) → 𝑊 ∈ V) |
| 27 | 18, 26 | sylbi 217 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} ≠ ∅ → 𝑊 ∈ V) |
| 28 | 27 | necon1bi 2953 | . . . 4 ⊢ (¬ 𝑊 ∈ V → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦)} = ∅) |
| 29 | 17, 28 | eqtrid 2776 | . . 3 ⊢ (¬ 𝑊 ∈ V → ≤ = ∅) |
| 30 | fvprc 6832 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
| 31 | 6, 30 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 32 | 31 | fveq2d 6844 | . . 3 ⊢ (¬ 𝑊 ∈ V → (le‘𝐾) = (le‘∅)) |
| 33 | 13, 29, 32 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝑊 ∈ V → ≤ = (le‘𝐾)) |
| 34 | 12, 33 | pm2.61i 182 | 1 ⊢ ≤ = (le‘𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {cpr 4587 〈cop 4591 {copab 5164 ‘cfv 6499 (class class class)co 7369 sSet csts 17109 ndxcnx 17139 lecple 17203 occoc 17204 toInccipo 18468 ocvcocv 21602 ClSubSpccss 21603 toHLcthl 21604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-tset 17215 df-ple 17216 df-ocomp 17217 df-ipo 18469 df-thl 21607 |
| This theorem is referenced by: thlleval 21640 |
| Copyright terms: Public domain | W3C validator |