Step | Hyp | Ref
| Expression |
1 | | flid 13528 |
. . . . 5
⊢ (𝐴 ∈ ℤ →
(⌊‘𝐴) = 𝐴) |
2 | 1 | oveq2d 7291 |
. . . 4
⊢ (𝐴 ∈ ℤ →
(1...(⌊‘𝐴)) =
(1...𝐴)) |
3 | 2 | sumeq1d 15413 |
. . 3
⊢ (𝐴 ∈ ℤ →
Σ𝑛 ∈
(1...(⌊‘𝐴))(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛)) |
4 | | fveq2 6774 |
. . . . . 6
⊢ (𝑛 = (𝑝↑𝑘) → (Λ‘𝑛) = (Λ‘(𝑝↑𝑘))) |
5 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑛 = (𝑝↑𝑘) → (𝑛 ∈ ℙ ↔ (𝑝↑𝑘) ∈ ℙ)) |
6 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑛 = (𝑝↑𝑘) → (log‘𝑛) = (log‘(𝑝↑𝑘))) |
7 | 5, 6 | ifbieq1d 4483 |
. . . . . 6
⊢ (𝑛 = (𝑝↑𝑘) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) |
8 | 4, 7 | oveq12d 7293 |
. . . . 5
⊢ (𝑛 = (𝑝↑𝑘) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = ((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0))) |
9 | | id 22 |
. . . . 5
⊢ (𝑛 = (𝑝↑𝑘) → 𝑛 = (𝑝↑𝑘)) |
10 | 8, 9 | oveq12d 7293 |
. . . 4
⊢ (𝑛 = (𝑝↑𝑘) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = (((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘))) |
11 | | zre 12323 |
. . . 4
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
12 | | elfznn 13285 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) |
13 | 12 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ 𝑛 ∈
ℕ) |
14 | | vmacl 26267 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ (Λ‘𝑛)
∈ ℝ) |
16 | 13 | nnrpd 12770 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ 𝑛 ∈
ℝ+) |
17 | 16 | relogcld 25778 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ (log‘𝑛) ∈
ℝ) |
18 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
19 | | ifcl 4504 |
. . . . . . . 8
⊢
(((log‘𝑛)
∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) ∈
ℝ) |
20 | 17, 18, 19 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ if(𝑛 ∈ ℙ,
(log‘𝑛), 0) ∈
ℝ) |
21 | 15, 20 | resubcld 11403 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ ((Λ‘𝑛)
− if(𝑛 ∈
ℙ, (log‘𝑛), 0))
∈ ℝ) |
22 | 21, 13 | nndivred 12027 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ (((Λ‘𝑛)
− if(𝑛 ∈
ℙ, (log‘𝑛), 0))
/ 𝑛) ∈
ℝ) |
23 | 22 | recnd 11003 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ (((Λ‘𝑛)
− if(𝑛 ∈
ℙ, (log‘𝑛), 0))
/ 𝑛) ∈
ℂ) |
24 | | simprr 770 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → (Λ‘𝑛) = 0) |
25 | | vmaprm 26266 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℙ →
(Λ‘𝑛) =
(log‘𝑛)) |
26 | | prmnn 16379 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℙ → 𝑛 ∈
ℕ) |
27 | 26 | nnred 11988 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℙ → 𝑛 ∈
ℝ) |
28 | | prmgt1 16402 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℙ → 1 <
𝑛) |
29 | 27, 28 | rplogcld 25784 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℙ →
(log‘𝑛) ∈
ℝ+) |
30 | 25, 29 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℙ →
(Λ‘𝑛) ∈
ℝ+) |
31 | 30 | rpne0d 12777 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℙ →
(Λ‘𝑛) ≠
0) |
32 | 31 | necon2bi 2974 |
. . . . . . . . . 10
⊢
((Λ‘𝑛)
= 0 → ¬ 𝑛 ∈
ℙ) |
33 | 32 | ad2antll 726 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → ¬ 𝑛 ∈
ℙ) |
34 | 33 | iffalsed 4470 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → if(𝑛 ∈
ℙ, (log‘𝑛), 0)
= 0) |
35 | 24, 34 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (0 −
0)) |
36 | | 0m0e0 12093 |
. . . . . . 7
⊢ (0
− 0) = 0 |
37 | 35, 36 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = 0) |
38 | 37 | oveq1d 7290 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = (0 / 𝑛)) |
39 | 12 | ad2antrl 725 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → 𝑛 ∈
ℕ) |
40 | 39 | nnrpd 12770 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → 𝑛 ∈
ℝ+) |
41 | 40 | rpcnne0d 12781 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → (𝑛 ∈
ℂ ∧ 𝑛 ≠
0)) |
42 | | div0 11663 |
. . . . . 6
⊢ ((𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (0 / 𝑛) = 0) |
43 | 41, 42 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → (0 / 𝑛) =
0) |
44 | 38, 43 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = 0) |
45 | 10, 11, 23, 44 | fsumvma2 26362 |
. . 3
⊢ (𝐴 ∈ ℤ →
Σ𝑛 ∈
(1...(⌊‘𝐴))(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘))) |
46 | 3, 45 | eqtr3d 2780 |
. 2
⊢ (𝐴 ∈ ℤ →
Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘))) |
47 | | fzfid 13693 |
. . . . 5
⊢ (𝐴 ∈ ℤ →
(2...((abs‘𝐴) + 1))
∈ Fin) |
48 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) |
49 | 48 | elin2d 4133 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ) |
50 | | prmnn 16379 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ) |
52 | 51 | nnred 11988 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ) |
53 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ) |
54 | | zcn 12324 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
55 | 54 | abscld 15148 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ →
(abs‘𝐴) ∈
ℝ) |
56 | | peano2re 11148 |
. . . . . . . . . . 11
⊢
((abs‘𝐴)
∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ) |
57 | 55, 56 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℤ →
((abs‘𝐴) + 1) ∈
ℝ) |
58 | 57 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((abs‘𝐴) + 1) ∈
ℝ) |
59 | | elinel1 4129 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ (0[,]𝐴)) |
60 | | elicc2 13144 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (𝑝
∈ (0[,]𝐴) ↔
(𝑝 ∈ ℝ ∧ 0
≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
61 | 18, 11, 60 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
62 | 59, 61 | syl5ib 243 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
63 | 62 | imp 407 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴)) |
64 | 63 | simp3d 1143 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≤ 𝐴) |
65 | 54 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℂ) |
66 | 65 | abscld 15148 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (abs‘𝐴) ∈
ℝ) |
67 | 53 | leabsd 15126 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ≤ (abs‘𝐴)) |
68 | 66 | lep1d 11906 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1)) |
69 | 53, 66, 58, 67, 68 | letrd 11132 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ≤ ((abs‘𝐴) + 1)) |
70 | 52, 53, 58, 64, 69 | letrd 11132 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≤ ((abs‘𝐴) + 1)) |
71 | | prmuz2 16401 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) |
72 | 49, 71 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈
(ℤ≥‘2)) |
73 | | nn0abscl 15024 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ →
(abs‘𝐴) ∈
ℕ0) |
74 | | nn0p1nn 12272 |
. . . . . . . . . . . 12
⊢
((abs‘𝐴)
∈ ℕ0 → ((abs‘𝐴) + 1) ∈ ℕ) |
75 | 73, 74 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ →
((abs‘𝐴) + 1) ∈
ℕ) |
76 | 75 | nnzd 12425 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℤ →
((abs‘𝐴) + 1) ∈
ℤ) |
77 | 76 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((abs‘𝐴) + 1) ∈
ℤ) |
78 | | elfz5 13248 |
. . . . . . . . 9
⊢ ((𝑝 ∈
(ℤ≥‘2) ∧ ((abs‘𝐴) + 1) ∈ ℤ) → (𝑝 ∈ (2...((abs‘𝐴) + 1)) ↔ 𝑝 ≤ ((abs‘𝐴) + 1))) |
79 | 72, 77, 78 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (2...((abs‘𝐴) + 1)) ↔ 𝑝 ≤ ((abs‘𝐴) + 1))) |
80 | 70, 79 | mpbird 256 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...((abs‘𝐴) + 1))) |
81 | 80 | ex 413 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ (2...((abs‘𝐴) + 1)))) |
82 | 81 | ssrdv 3927 |
. . . . 5
⊢ (𝐴 ∈ ℤ →
((0[,]𝐴) ∩ ℙ)
⊆ (2...((abs‘𝐴)
+ 1))) |
83 | 47, 82 | ssfid 9042 |
. . . 4
⊢ (𝐴 ∈ ℤ →
((0[,]𝐴) ∩ ℙ)
∈ Fin) |
84 | | fzfid 13693 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin) |
85 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) |
86 | 85 | elin2d 4133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℙ) |
87 | | elfznn 13285 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ) |
88 | 87 | ad2antll 726 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑘 ∈ ℕ) |
89 | | vmappw 26265 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) →
(Λ‘(𝑝↑𝑘)) = (log‘𝑝)) |
90 | 86, 88, 89 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) →
(Λ‘(𝑝↑𝑘)) = (log‘𝑝)) |
91 | 51 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℕ) |
92 | 91 | nnrpd 12770 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℝ+) |
93 | 92 | relogcld 25778 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘𝑝) ∈
ℝ) |
94 | 90, 93 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) →
(Λ‘(𝑝↑𝑘)) ∈ ℝ) |
95 | 88 | nnnn0d 12293 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑘 ∈ ℕ0) |
96 | | nnexpcl 13795 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑝↑𝑘) ∈
ℕ) |
97 | 91, 95, 96 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (𝑝↑𝑘) ∈ ℕ) |
98 | 97 | nnrpd 12770 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (𝑝↑𝑘) ∈
ℝ+) |
99 | 98 | relogcld 25778 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘(𝑝↑𝑘)) ∈ ℝ) |
100 | | ifcl 4504 |
. . . . . . . . 9
⊢
(((log‘(𝑝↑𝑘)) ∈ ℝ ∧ 0 ∈ ℝ)
→ if((𝑝↑𝑘) ∈ ℙ,
(log‘(𝑝↑𝑘)), 0) ∈
ℝ) |
101 | 99, 18, 100 | sylancl 586 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0) ∈ ℝ) |
102 | 94, 101 | resubcld 11403 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) →
((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) ∈ ℝ) |
103 | 102, 97 | nndivred 12027 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) →
(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ∈ ℝ) |
104 | 103 | anassrs 468 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) →
(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ∈ ℝ) |
105 | 84, 104 | fsumrecl 15446 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ∈ ℝ) |
106 | 83, 105 | fsumrecl 15446 |
. . 3
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ∈ ℝ) |
107 | 51 | nnrpd 12770 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+) |
108 | 107 | relogcld 25778 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℝ) |
109 | | uz2m1nn 12663 |
. . . . . . 7
⊢ (𝑝 ∈
(ℤ≥‘2) → (𝑝 − 1) ∈ ℕ) |
110 | 72, 109 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 − 1) ∈ ℕ) |
111 | 51, 110 | nnmulcld 12026 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ∈ ℕ) |
112 | 108, 111 | nndivred 12027 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈
ℝ) |
113 | 83, 112 | fsumrecl 15446 |
. . 3
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈ ((0[,]𝐴) ∩
ℙ)((log‘𝑝) /
(𝑝 · (𝑝 − 1))) ∈
ℝ) |
114 | | 2re 12047 |
. . . 4
⊢ 2 ∈
ℝ |
115 | 114 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℤ → 2 ∈
ℝ) |
116 | 18 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ∈
ℝ) |
117 | 51 | nngt0d 12022 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝑝) |
118 | 116, 52, 53, 117, 64 | ltletrd 11135 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝐴) |
119 | 53, 118 | elrpd 12769 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈
ℝ+) |
120 | 119 | relogcld 25778 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈
ℝ) |
121 | | prmgt1 16402 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℙ → 1 <
𝑝) |
122 | 49, 121 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝) |
123 | 52, 122 | rplogcld 25784 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℝ+) |
124 | 120, 123 | rerpdivcld 12803 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈
ℝ) |
125 | 123 | rpcnd 12774 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℂ) |
126 | 125 | mulid2d 10993 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 ·
(log‘𝑝)) =
(log‘𝑝)) |
127 | 107, 119 | logled 25782 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ≤ 𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴))) |
128 | 64, 127 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ≤ (log‘𝐴)) |
129 | 126, 128 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 ·
(log‘𝑝)) ≤
(log‘𝐴)) |
130 | | 1re 10975 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
131 | 130 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈
ℝ) |
132 | 131, 120,
123 | lemuldivd 12821 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 ·
(log‘𝑝)) ≤
(log‘𝐴) ↔ 1 ≤
((log‘𝐴) /
(log‘𝑝)))) |
133 | 129, 132 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ≤
((log‘𝐴) /
(log‘𝑝))) |
134 | | flge1nn 13541 |
. . . . . . . . 9
⊢
((((log‘𝐴) /
(log‘𝑝)) ∈
ℝ ∧ 1 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈
ℕ) |
135 | 124, 133,
134 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ) |
136 | | nnuz 12621 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
137 | 135, 136 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ∈
(ℤ≥‘1)) |
138 | 103 | recnd 11003 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) →
(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ∈ ℂ) |
139 | 138 | anassrs 468 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) →
(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ∈ ℂ) |
140 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (𝑝↑𝑘) = (𝑝↑1)) |
141 | 140 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑘 = 1 →
(Λ‘(𝑝↑𝑘)) = (Λ‘(𝑝↑1))) |
142 | 140 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → ((𝑝↑𝑘) ∈ ℙ ↔ (𝑝↑1) ∈ ℙ)) |
143 | 140 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (log‘(𝑝↑𝑘)) = (log‘(𝑝↑1))) |
144 | 142, 143 | ifbieq1d 4483 |
. . . . . . . . 9
⊢ (𝑘 = 1 → if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0) = if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) |
145 | 141, 144 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑘 = 1 →
((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) = ((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ,
(log‘(𝑝↑1)),
0))) |
146 | 145, 140 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑘 = 1 →
(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) = (((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1))) |
147 | 137, 139,
146 | fsum1p 15465 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) = ((((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) + Σ𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)))) |
148 | 51 | nncnd 11989 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℂ) |
149 | 148 | exp1d 13859 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝↑1) = 𝑝) |
150 | 149 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(Λ‘(𝑝↑1))
= (Λ‘𝑝)) |
151 | | vmaprm 26266 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℙ →
(Λ‘𝑝) =
(log‘𝑝)) |
152 | 49, 151 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(Λ‘𝑝) =
(log‘𝑝)) |
153 | 150, 152 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(Λ‘(𝑝↑1))
= (log‘𝑝)) |
154 | 149, 49 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝↑1) ∈ ℙ) |
155 | 154 | iftrued 4467 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → if((𝑝↑1) ∈ ℙ,
(log‘(𝑝↑1)), 0)
= (log‘(𝑝↑1))) |
156 | 149 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘(𝑝↑1)) = (log‘𝑝)) |
157 | 155, 156 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → if((𝑝↑1) ∈ ℙ,
(log‘(𝑝↑1)), 0)
= (log‘𝑝)) |
158 | 153, 157 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) =
((log‘𝑝) −
(log‘𝑝))) |
159 | 125 | subidd 11320 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) − (log‘𝑝)) = 0) |
160 | 158, 159 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) =
0) |
161 | 160, 149 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) = (0 / 𝑝)) |
162 | 107 | rpcnne0d 12781 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) |
163 | | div0 11663 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0) |
164 | 162, 163 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 / 𝑝) = 0) |
165 | 161, 164 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) = 0) |
166 | | 1p1e2 12098 |
. . . . . . . . . 10
⊢ (1 + 1) =
2 |
167 | 166 | oveq1i 7285 |
. . . . . . . . 9
⊢ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) |
168 | 167 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) |
169 | | elfzuz 13252 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈
(ℤ≥‘2)) |
170 | | eluz2nn 12624 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘2) → 𝑘 ∈ ℕ) |
171 | 169, 170 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ) |
172 | 171, 167 | eleq2s 2857 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ) |
173 | 49, 172, 89 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (Λ‘(𝑝↑𝑘)) = (log‘𝑝)) |
174 | 51 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑝 ∈ ℕ) |
175 | | nnq 12702 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℕ → 𝑝 ∈
ℚ) |
176 | 174, 175 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑝 ∈ ℚ) |
177 | 169, 167 | eleq2s 2857 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈
(ℤ≥‘2)) |
178 | 177 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑘 ∈
(ℤ≥‘2)) |
179 | | expnprm 16603 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℚ ∧ 𝑘 ∈
(ℤ≥‘2)) → ¬ (𝑝↑𝑘) ∈ ℙ) |
180 | 176, 178,
179 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ¬ (𝑝↑𝑘) ∈ ℙ) |
181 | 180 | iffalsed 4470 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0) = 0) |
182 | 173, 181 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) = ((log‘𝑝) − 0)) |
183 | 125 | subid1d 11321 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) − 0) = (log‘𝑝)) |
184 | 183 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) − 0) = (log‘𝑝)) |
185 | 182, 184 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) = (log‘𝑝)) |
186 | 185 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) = ((log‘𝑝) / (𝑝↑𝑘))) |
187 | 168, 186 | sumeq12dv 15418 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘))) |
188 | 165, 187 | oveq12d 7293 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) + Σ𝑘 ∈ ((1 +
1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘))) = (0 + Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘)))) |
189 | | fzfid 13693 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(2...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin) |
190 | 108 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈
ℝ) |
191 | | nnnn0 12240 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
192 | 51, 191, 96 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ∈ ℕ) |
193 | 190, 192 | nndivred 12027 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝↑𝑘)) ∈ ℝ) |
194 | 171, 193 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) / (𝑝↑𝑘)) ∈ ℝ) |
195 | 189, 194 | fsumrecl 15446 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘)) ∈ ℝ) |
196 | 195 | recnd 11003 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘)) ∈ ℂ) |
197 | 196 | addid2d 11176 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 + Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘))) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘))) |
198 | 147, 188,
197 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘))) |
199 | 107 | rpreccld 12782 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈
ℝ+) |
200 | 124 | flcld 13518 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) |
201 | 200 | peano2zd 12429 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℤ) |
202 | 199, 201 | rpexpcld 13962 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ∈
ℝ+) |
203 | 202 | rpge0d 12776 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) |
204 | 51 | nnrecred 12024 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈
ℝ) |
205 | 204 | resqcld 13965 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑2) ∈
ℝ) |
206 | 135 | peano2nnd 11990 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℕ) |
207 | 206 | nnnn0d 12293 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈
ℕ0) |
208 | 204, 207 | reexpcld 13881 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ∈
ℝ) |
209 | 205, 208 | subge02d 11567 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 / 𝑝)↑2))) |
210 | 203, 209 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 / 𝑝)↑2)) |
211 | 110 | nnrpd 12770 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 − 1) ∈
ℝ+) |
212 | 211 | rpcnne0d 12781 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) ∈ ℂ ∧
(𝑝 − 1) ≠
0)) |
213 | 199 | rpcnd 12774 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈
ℂ) |
214 | | dmdcan 11685 |
. . . . . . . . . . 11
⊢ ((((𝑝 − 1) ∈ ℂ ∧
(𝑝 − 1) ≠ 0) ∧
(𝑝 ∈ ℂ ∧
𝑝 ≠ 0) ∧ (1 / 𝑝) ∈ ℂ) →
(((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 / 𝑝) / 𝑝)) |
215 | 212, 162,
213, 214 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 / 𝑝) / 𝑝)) |
216 | 131 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈
ℂ) |
217 | | divsubdir 11669 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℂ ∧ 1 ∈
ℂ ∧ (𝑝 ∈
ℂ ∧ 𝑝 ≠ 0))
→ ((𝑝 − 1) /
𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝))) |
218 | 148, 216,
162, 217 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝))) |
219 | | divid 11662 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (𝑝 / 𝑝) = 1) |
220 | 162, 219 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 / 𝑝) = 1) |
221 | 220 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 / 𝑝) − (1 / 𝑝)) = (1 − (1 / 𝑝))) |
222 | 218, 221 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) / 𝑝) = (1 − (1 / 𝑝))) |
223 | | divdiv1 11686 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ (𝑝
∈ ℂ ∧ 𝑝 ≠
0) ∧ ((𝑝 − 1)
∈ ℂ ∧ (𝑝
− 1) ≠ 0)) → ((1 / 𝑝) / (𝑝 − 1)) = (1 / (𝑝 · (𝑝 − 1)))) |
224 | 216, 162,
212, 223 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / (𝑝 − 1)) = (1 / (𝑝 · (𝑝 − 1)))) |
225 | 222, 224 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1))))) |
226 | 51 | nnne0d 12023 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≠ 0) |
227 | 213, 148,
226 | divrecd 11754 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / 𝑝) = ((1 / 𝑝) · (1 / 𝑝))) |
228 | 213 | sqvald 13861 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑2) = ((1 / 𝑝) · (1 / 𝑝))) |
229 | 227, 228 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / 𝑝) = ((1 / 𝑝)↑2)) |
230 | 215, 225,
229 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 − (1 /
𝑝)) · (1 / (𝑝 · (𝑝 − 1)))) = ((1 / 𝑝)↑2)) |
231 | 210, 230 | breqtrrd 5102 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 /
𝑝)) · (1 / (𝑝 · (𝑝 − 1))))) |
232 | 205, 208 | resubcld 11403 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ∈
ℝ) |
233 | 111 | nnrecred 12024 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / (𝑝 · (𝑝 − 1))) ∈
ℝ) |
234 | | resubcl 11285 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (1 / 𝑝) ∈ ℝ) → (1 − (1 /
𝑝)) ∈
ℝ) |
235 | 130, 204,
234 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 − (1 /
𝑝)) ∈
ℝ) |
236 | | recgt1 11871 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℝ ∧ 0 <
𝑝) → (1 < 𝑝 ↔ (1 / 𝑝) < 1)) |
237 | 52, 117, 236 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 < 𝑝 ↔ (1 / 𝑝) < 1)) |
238 | 122, 237 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) < 1) |
239 | | posdif 11468 |
. . . . . . . . . . 11
⊢ (((1 /
𝑝) ∈ ℝ ∧ 1
∈ ℝ) → ((1 / 𝑝) < 1 ↔ 0 < (1 − (1 / 𝑝)))) |
240 | 204, 130,
239 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) < 1 ↔ 0 < (1
− (1 / 𝑝)))) |
241 | 238, 240 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < (1 −
(1 / 𝑝))) |
242 | | ledivmul 11851 |
. . . . . . . . 9
⊢ (((((1 /
𝑝)↑2) − ((1 /
𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ∈ ℝ ∧
(1 / (𝑝 · (𝑝 − 1))) ∈ ℝ
∧ ((1 − (1 / 𝑝))
∈ ℝ ∧ 0 < (1 − (1 / 𝑝)))) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 /
𝑝)) · (1 / (𝑝 · (𝑝 − 1)))))) |
243 | 232, 233,
235, 241, 242 | syl112anc 1373 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 /
𝑝)) · (1 / (𝑝 · (𝑝 − 1)))))) |
244 | 231, 243 | mpbird 256 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1)))) |
245 | 235, 241 | elrpd 12769 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 − (1 /
𝑝)) ∈
ℝ+) |
246 | 232, 245 | rerpdivcld 12803 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝))) ∈
ℝ) |
247 | 246, 233,
123 | lemul2d 12816 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝)))) ≤
((log‘𝑝) · (1
/ (𝑝 · (𝑝 −
1)))))) |
248 | 244, 247 | mpbid 231 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝)))) ≤
((log‘𝑝) · (1
/ (𝑝 · (𝑝 − 1))))) |
249 | 125 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈
ℂ) |
250 | 192 | nncnd 11989 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ∈ ℂ) |
251 | 192 | nnne0d 12023 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ≠ 0) |
252 | 249, 250,
251 | divrecd 11754 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝↑𝑘)) = ((log‘𝑝) · (1 / (𝑝↑𝑘)))) |
253 | 148 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℂ) |
254 | 51 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ) |
255 | 254 | nnne0d 12023 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ≠ 0) |
256 | | nnz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
257 | 256 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
258 | 253, 255,
257 | exprecd 13872 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑝)↑𝑘) = (1 / (𝑝↑𝑘))) |
259 | 258 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (1 / (𝑝↑𝑘)))) |
260 | 252, 259 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝↑𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘))) |
261 | 171, 260 | sylan2 593 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) / (𝑝↑𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘))) |
262 | 261 | sumeq2dv 15415 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘))) |
263 | 171 | nnnn0d 12293 |
. . . . . . . . 9
⊢ (𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ0) |
264 | | expcl 13800 |
. . . . . . . . 9
⊢ (((1 /
𝑝) ∈ ℂ ∧
𝑘 ∈
ℕ0) → ((1 / 𝑝)↑𝑘) ∈ ℂ) |
265 | 213, 263,
264 | syl2an 596 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ) |
266 | 189, 125,
265 | fsummulc2 15496 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘))) |
267 | | fzval3 13456 |
. . . . . . . . . . 11
⊢
((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ →
(2...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) |
268 | 200, 267 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(2...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) |
269 | 268 | sumeq1d 15413 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = Σ𝑘 ∈
(2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘)) |
270 | 204, 238 | ltned 11111 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ≠ 1) |
271 | | 2nn0 12250 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
272 | 271 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 2 ∈
ℕ0) |
273 | | eluzp1p1 12610 |
. . . . . . . . . . . 12
⊢
((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ (ℤ≥‘1)
→ ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈
(ℤ≥‘(1 + 1))) |
274 | 137, 273 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈
(ℤ≥‘(1 + 1))) |
275 | | df-2 12036 |
. . . . . . . . . . . 12
⊢ 2 = (1 +
1) |
276 | 275 | fveq2i 6777 |
. . . . . . . . . . 11
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
277 | 274, 276 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈
(ℤ≥‘2)) |
278 | 213, 270,
272, 277 | geoserg 15578 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝)))) |
279 | 269, 278 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝)))) |
280 | 279 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝))))) |
281 | 262, 266,
280 | 3eqtr2d 2784 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘)) = ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 /
𝑝))))) |
282 | 111 | nncnd 11989 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ∈ ℂ) |
283 | 111 | nnne0d 12023 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ≠ 0) |
284 | 125, 282,
283 | divrecd 11754 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) = ((log‘𝑝) · (1 / (𝑝 · (𝑝 − 1))))) |
285 | 248, 281,
284 | 3brtr4d 5106 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝↑𝑘)) ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1)))) |
286 | 198, 285 | eqbrtrd 5096 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1)))) |
287 | 83, 105, 112, 286 | fsumle 15511 |
. . 3
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ≤ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1)))) |
288 | | elfzuz 13252 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ (2...((abs‘𝐴) + 1)) → 𝑝 ∈
(ℤ≥‘2)) |
289 | | eluz2nn 12624 |
. . . . . . . . . . 11
⊢ (𝑝 ∈
(ℤ≥‘2) → 𝑝 ∈ ℕ) |
290 | 288, 289 | syl 17 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (2...((abs‘𝐴) + 1)) → 𝑝 ∈
ℕ) |
291 | 290 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈
ℕ) |
292 | 291 | nnred 11988 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈
ℝ) |
293 | 288 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈
(ℤ≥‘2)) |
294 | | eluz2gt1 12660 |
. . . . . . . . 9
⊢ (𝑝 ∈
(ℤ≥‘2) → 1 < 𝑝) |
295 | 293, 294 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 1 < 𝑝) |
296 | 292, 295 | rplogcld 25784 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (log‘𝑝) ∈
ℝ+) |
297 | 293, 109 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 − 1) ∈
ℕ) |
298 | 291, 297 | nnmulcld 12026 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 · (𝑝 − 1)) ∈ ℕ) |
299 | 298 | nnrpd 12770 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 · (𝑝 − 1)) ∈
ℝ+) |
300 | 296, 299 | rpdivcld 12789 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) →
((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈
ℝ+) |
301 | 300 | rpred 12772 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) →
((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈
ℝ) |
302 | 47, 301 | fsumrecl 15446 |
. . . 4
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈
(2...((abs‘𝐴) +
1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈
ℝ) |
303 | 300 | rpge0d 12776 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 0 ≤
((log‘𝑝) / (𝑝 · (𝑝 − 1)))) |
304 | 47, 301, 303, 82 | fsumless 15508 |
. . . 4
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈ ((0[,]𝐴) ∩
ℙ)((log‘𝑝) /
(𝑝 · (𝑝 − 1))) ≤ Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1)))) |
305 | | rplogsumlem1 26632 |
. . . . 5
⊢
(((abs‘𝐴) + 1)
∈ ℕ → Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2) |
306 | 75, 305 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈
(2...((abs‘𝐴) +
1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2) |
307 | 113, 302,
115, 304, 306 | letrd 11132 |
. . 3
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈ ((0[,]𝐴) ∩
ℙ)((log‘𝑝) /
(𝑝 · (𝑝 − 1))) ≤
2) |
308 | 106, 113,
115, 287, 307 | letrd 11132 |
. 2
⊢ (𝐴 ∈ ℤ →
Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝↑𝑘)) − if((𝑝↑𝑘) ∈ ℙ, (log‘(𝑝↑𝑘)), 0)) / (𝑝↑𝑘)) ≤ 2) |
309 | 46, 308 | eqbrtrd 5096 |
1
⊢ (𝐴 ∈ ℤ →
Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ≤ 2) |