MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem2 Structured version   Visualization version   GIF version

Theorem rplogsumlem2 27412
Description: Lemma for rplogsum 27454. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem2 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ≤ 2)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rplogsumlem2
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flid 13730 . . . . 5 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
21oveq2d 7369 . . . 4 (𝐴 ∈ ℤ → (1...(⌊‘𝐴)) = (1...𝐴))
32sumeq1d 15625 . . 3 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛))
4 fveq2 6826 . . . . . 6 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
5 eleq1 2816 . . . . . . 7 (𝑛 = (𝑝𝑘) → (𝑛 ∈ ℙ ↔ (𝑝𝑘) ∈ ℙ))
6 fveq2 6826 . . . . . . 7 (𝑛 = (𝑝𝑘) → (log‘𝑛) = (log‘(𝑝𝑘)))
75, 6ifbieq1d 4503 . . . . . 6 (𝑛 = (𝑝𝑘) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0))
84, 7oveq12d 7371 . . . . 5 (𝑛 = (𝑝𝑘) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)))
9 id 22 . . . . 5 (𝑛 = (𝑝𝑘) → 𝑛 = (𝑝𝑘))
108, 9oveq12d 7371 . . . 4 (𝑛 = (𝑝𝑘) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)))
11 zre 12493 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
12 elfznn 13474 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
1312adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
14 vmacl 27044 . . . . . . . 8 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
1613nnrpd 12953 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
1716relogcld 26548 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
18 0re 11136 . . . . . . . 8 0 ∈ ℝ
19 ifcl 4524 . . . . . . . 8 (((log‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) ∈ ℝ)
2017, 18, 19sylancl 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) ∈ ℝ)
2115, 20resubcld 11566 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) ∈ ℝ)
2221, 13nndivred 12200 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ∈ ℝ)
2322recnd 11162 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ∈ ℂ)
24 simprr 772 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
25 vmaprm 27043 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → (Λ‘𝑛) = (log‘𝑛))
26 prmnn 16603 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
2726nnred 12161 . . . . . . . . . . . . . 14 (𝑛 ∈ ℙ → 𝑛 ∈ ℝ)
28 prmgt1 16626 . . . . . . . . . . . . . 14 (𝑛 ∈ ℙ → 1 < 𝑛)
2927, 28rplogcld 26554 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → (log‘𝑛) ∈ ℝ+)
3025, 29eqeltrd 2828 . . . . . . . . . . . 12 (𝑛 ∈ ℙ → (Λ‘𝑛) ∈ ℝ+)
3130rpne0d 12960 . . . . . . . . . . 11 (𝑛 ∈ ℙ → (Λ‘𝑛) ≠ 0)
3231necon2bi 2955 . . . . . . . . . 10 ((Λ‘𝑛) = 0 → ¬ 𝑛 ∈ ℙ)
3332ad2antll 729 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → ¬ 𝑛 ∈ ℙ)
3433iffalsed 4489 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = 0)
3524, 34oveq12d 7371 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (0 − 0))
36 0m0e0 12261 . . . . . . 7 (0 − 0) = 0
3735, 36eqtrdi 2780 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = 0)
3837oveq1d 7368 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = (0 / 𝑛))
3912ad2antrl 728 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℕ)
4039nnrpd 12953 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℝ+)
4140rpcnne0d 12964 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
42 div0 11830 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (0 / 𝑛) = 0)
4341, 42syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (0 / 𝑛) = 0)
4438, 43eqtrd 2764 . . . 4 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = 0)
4510, 11, 23, 44fsumvma2 27141 . . 3 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)))
463, 45eqtr3d 2766 . 2 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)))
47 fzfid 13898 . . . . 5 (𝐴 ∈ ℤ → (2...((abs‘𝐴) + 1)) ∈ Fin)
48 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
4948elin2d 4158 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
50 prmnn 16603 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5149, 50syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
5251nnred 12161 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
5311adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
54 zcn 12494 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
5554abscld 15364 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℝ)
56 peano2re 11307 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((abs‘𝐴) + 1) ∈ ℝ)
5857adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((abs‘𝐴) + 1) ∈ ℝ)
59 elinel1 4154 . . . . . . . . . . . 12 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ (0[,]𝐴))
60 elicc2 13332 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
6118, 11, 60sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
6259, 61imbitrid 244 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
6362imp 406 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
6463simp3d 1144 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
6554adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℂ)
6665abscld 15364 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (abs‘𝐴) ∈ ℝ)
6753leabsd 15340 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ≤ (abs‘𝐴))
6866lep1d 12074 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1))
6953, 66, 58, 67, 68letrd 11291 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ≤ ((abs‘𝐴) + 1))
7052, 53, 58, 64, 69letrd 11291 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≤ ((abs‘𝐴) + 1))
71 prmuz2 16625 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
7249, 71syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
73 nn0abscl 15237 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
74 nn0p1nn 12441 . . . . . . . . . . . 12 ((abs‘𝐴) ∈ ℕ0 → ((abs‘𝐴) + 1) ∈ ℕ)
7573, 74syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℤ → ((abs‘𝐴) + 1) ∈ ℕ)
7675nnzd 12516 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((abs‘𝐴) + 1) ∈ ℤ)
7776adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((abs‘𝐴) + 1) ∈ ℤ)
78 elfz5 13437 . . . . . . . . 9 ((𝑝 ∈ (ℤ‘2) ∧ ((abs‘𝐴) + 1) ∈ ℤ) → (𝑝 ∈ (2...((abs‘𝐴) + 1)) ↔ 𝑝 ≤ ((abs‘𝐴) + 1)))
7972, 77, 78syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (2...((abs‘𝐴) + 1)) ↔ 𝑝 ≤ ((abs‘𝐴) + 1)))
8070, 79mpbird 257 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...((abs‘𝐴) + 1)))
8180ex 412 . . . . . 6 (𝐴 ∈ ℤ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ (2...((abs‘𝐴) + 1))))
8281ssrdv 3943 . . . . 5 (𝐴 ∈ ℤ → ((0[,]𝐴) ∩ ℙ) ⊆ (2...((abs‘𝐴) + 1)))
8347, 82ssfid 9170 . . . 4 (𝐴 ∈ ℤ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
84 fzfid 13898 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
85 simprl 770 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
8685elin2d 4158 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℙ)
87 elfznn 13474 . . . . . . . . . . 11 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
8887ad2antll 729 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑘 ∈ ℕ)
89 vmappw 27042 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
9086, 88, 89syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
9151adantrr 717 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℕ)
9291nnrpd 12953 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℝ+)
9392relogcld 26548 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘𝑝) ∈ ℝ)
9490, 93eqeltrd 2828 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℝ)
9588nnnn0d 12463 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑘 ∈ ℕ0)
96 nnexpcl 13999 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
9791, 95, 96syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℕ)
9897nnrpd 12953 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℝ+)
9998relogcld 26548 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘(𝑝𝑘)) ∈ ℝ)
100 ifcl 4524 . . . . . . . . 9 (((log‘(𝑝𝑘)) ∈ ℝ ∧ 0 ∈ ℝ) → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) ∈ ℝ)
10199, 18, 100sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) ∈ ℝ)
10294, 101resubcld 11566 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) ∈ ℝ)
103102, 97nndivred 12200 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
104103anassrs 467 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
10584, 104fsumrecl 15659 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
10683, 105fsumrecl 15659 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
10751nnrpd 12953 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
108107relogcld 26548 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
109 uz2m1nn 12842 . . . . . . 7 (𝑝 ∈ (ℤ‘2) → (𝑝 − 1) ∈ ℕ)
11072, 109syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 − 1) ∈ ℕ)
11151, 110nnmulcld 12199 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ∈ ℕ)
112108, 111nndivred 12200 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
11383, 112fsumrecl 15659 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
114 2re 12220 . . . 4 2 ∈ ℝ
115114a1i 11 . . 3 (𝐴 ∈ ℤ → 2 ∈ ℝ)
11618a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ∈ ℝ)
11751nngt0d 12195 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝑝)
118116, 52, 53, 117, 64ltletrd 11294 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝐴)
11953, 118elrpd 12952 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ+)
120119relogcld 26548 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
121 prmgt1 16626 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 1 < 𝑝)
12249, 121syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
12352, 122rplogcld 26554 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
124120, 123rerpdivcld 12986 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
125123rpcnd 12957 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
126125mullidd 11152 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 · (log‘𝑝)) = (log‘𝑝))
127107, 119logled 26552 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴)))
12864, 127mpbid 232 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ≤ (log‘𝐴))
129126, 128eqbrtrd 5117 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 · (log‘𝑝)) ≤ (log‘𝐴))
130 1re 11134 . . . . . . . . . . . 12 1 ∈ ℝ
131130a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈ ℝ)
132131, 120, 123lemuldivd 13004 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝))))
133129, 132mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ≤ ((log‘𝐴) / (log‘𝑝)))
134 flge1nn 13743 . . . . . . . . 9 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 1 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ)
135124, 133, 134syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ)
136 nnuz 12796 . . . . . . . 8 ℕ = (ℤ‘1)
137135, 136eleqtrdi 2838 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ (ℤ‘1))
138103recnd 11162 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℂ)
139138anassrs 467 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℂ)
140 oveq2 7361 . . . . . . . . . 10 (𝑘 = 1 → (𝑝𝑘) = (𝑝↑1))
141140fveq2d 6830 . . . . . . . . 9 (𝑘 = 1 → (Λ‘(𝑝𝑘)) = (Λ‘(𝑝↑1)))
142140eleq1d 2813 . . . . . . . . . 10 (𝑘 = 1 → ((𝑝𝑘) ∈ ℙ ↔ (𝑝↑1) ∈ ℙ))
143140fveq2d 6830 . . . . . . . . . 10 (𝑘 = 1 → (log‘(𝑝𝑘)) = (log‘(𝑝↑1)))
144142, 143ifbieq1d 4503 . . . . . . . . 9 (𝑘 = 1 → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) = if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0))
145141, 144oveq12d 7371 . . . . . . . 8 (𝑘 = 1 → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) = ((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)))
146145, 140oveq12d 7371 . . . . . . 7 (𝑘 = 1 → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = (((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)))
147137, 139, 146fsum1p 15678 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = ((((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) + Σ𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘))))
14851nncnd 12162 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℂ)
149148exp1d 14066 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝↑1) = 𝑝)
150149fveq2d 6830 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (Λ‘(𝑝↑1)) = (Λ‘𝑝))
151 vmaprm 27043 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → (Λ‘𝑝) = (log‘𝑝))
15249, 151syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (Λ‘𝑝) = (log‘𝑝))
153150, 152eqtrd 2764 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (Λ‘(𝑝↑1)) = (log‘𝑝))
154149, 49eqeltrd 2828 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝↑1) ∈ ℙ)
155154iftrued 4486 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0) = (log‘(𝑝↑1)))
156149fveq2d 6830 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘(𝑝↑1)) = (log‘𝑝))
157155, 156eqtrd 2764 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0) = (log‘𝑝))
158153, 157oveq12d 7371 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) = ((log‘𝑝) − (log‘𝑝)))
159125subidd 11481 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) − (log‘𝑝)) = 0)
160158, 159eqtrd 2764 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) = 0)
161160, 149oveq12d 7371 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) = (0 / 𝑝))
162107rpcnne0d 12964 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
163 div0 11830 . . . . . . . . 9 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0)
164162, 163syl 17 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 / 𝑝) = 0)
165161, 164eqtrd 2764 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) = 0)
166 1p1e2 12266 . . . . . . . . . 10 (1 + 1) = 2
167166oveq1i 7363 . . . . . . . . 9 ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2...(⌊‘((log‘𝐴) / (log‘𝑝))))
168167a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2...(⌊‘((log‘𝐴) / (log‘𝑝)))))
169 elfzuz 13441 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ (ℤ‘2))
170 eluz2nn 12807 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
171169, 170syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
172171, 167eleq2s 2846 . . . . . . . . . . . 12 (𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
17349, 172, 89syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
17451adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑝 ∈ ℕ)
175 nnq 12881 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
176174, 175syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑝 ∈ ℚ)
177169, 167eleq2s 2846 . . . . . . . . . . . . . 14 (𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ (ℤ‘2))
178177adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑘 ∈ (ℤ‘2))
179 expnprm 16832 . . . . . . . . . . . . 13 ((𝑝 ∈ ℚ ∧ 𝑘 ∈ (ℤ‘2)) → ¬ (𝑝𝑘) ∈ ℙ)
180176, 178, 179syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ¬ (𝑝𝑘) ∈ ℙ)
181180iffalsed 4489 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) = 0)
182173, 181oveq12d 7371 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) = ((log‘𝑝) − 0))
183125subid1d 11482 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) − 0) = (log‘𝑝))
184183adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) − 0) = (log‘𝑝))
185182, 184eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) = (log‘𝑝))
186185oveq1d 7368 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = ((log‘𝑝) / (𝑝𝑘)))
187168, 186sumeq12dv 15631 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)))
188165, 187oveq12d 7371 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) + Σ𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘))) = (0 + Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘))))
189 fzfid 13898 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
190108adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈ ℝ)
191 nnnn0 12409 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
19251, 191, 96syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
193190, 192nndivred 12200 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝𝑘)) ∈ ℝ)
194171, 193sylan2 593 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) / (𝑝𝑘)) ∈ ℝ)
195189, 194fsumrecl 15659 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) ∈ ℝ)
196195recnd 11162 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) ∈ ℂ)
197196addlidd 11335 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 + Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘))) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)))
198147, 188, 1973eqtrd 2768 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)))
199107rpreccld 12965 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈ ℝ+)
200124flcld 13720 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
201200peano2zd 12601 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℤ)
202199, 201rpexpcld 14172 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ∈ ℝ+)
203202rpge0d 12959 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)))
20451nnrecred 12197 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈ ℝ)
205204resqcld 14050 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑2) ∈ ℝ)
206135peano2nnd 12163 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℕ)
207206nnnn0d 12463 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℕ0)
208204, 207reexpcld 14088 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ∈ ℝ)
209205, 208subge02d 11730 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 / 𝑝)↑2)))
210203, 209mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 / 𝑝)↑2))
211110nnrpd 12953 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 − 1) ∈ ℝ+)
212211rpcnne0d 12964 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0))
213199rpcnd 12957 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈ ℂ)
214 dmdcan 11852 . . . . . . . . . . 11 ((((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0) ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ (1 / 𝑝) ∈ ℂ) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 / 𝑝) / 𝑝))
215212, 162, 213, 214syl3anc 1373 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 / 𝑝) / 𝑝))
216131recnd 11162 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈ ℂ)
217 divsubdir 11836 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
218148, 216, 162, 217syl3anc 1373 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
219 divid 11828 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (𝑝 / 𝑝) = 1)
220162, 219syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 / 𝑝) = 1)
221220oveq1d 7368 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 / 𝑝) − (1 / 𝑝)) = (1 − (1 / 𝑝)))
222218, 221eqtrd 2764 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) / 𝑝) = (1 − (1 / 𝑝)))
223 divdiv1 11853 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0)) → ((1 / 𝑝) / (𝑝 − 1)) = (1 / (𝑝 · (𝑝 − 1))))
224216, 162, 212, 223syl3anc 1373 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / (𝑝 − 1)) = (1 / (𝑝 · (𝑝 − 1))))
225222, 224oveq12d 7371 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1)))))
22651nnne0d 12196 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≠ 0)
227213, 148, 226divrecd 11921 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / 𝑝) = ((1 / 𝑝) · (1 / 𝑝)))
228213sqvald 14068 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑2) = ((1 / 𝑝) · (1 / 𝑝)))
229227, 228eqtr4d 2767 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / 𝑝) = ((1 / 𝑝)↑2))
230215, 225, 2293eqtr3d 2772 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1)))) = ((1 / 𝑝)↑2))
231210, 230breqtrrd 5123 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1)))))
232205, 208resubcld 11566 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ∈ ℝ)
233111nnrecred 12197 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / (𝑝 · (𝑝 − 1))) ∈ ℝ)
234 resubcl 11446 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (1 / 𝑝) ∈ ℝ) → (1 − (1 / 𝑝)) ∈ ℝ)
235130, 204, 234sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 − (1 / 𝑝)) ∈ ℝ)
236 recgt1 12039 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ ∧ 0 < 𝑝) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
23752, 117, 236syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
238122, 237mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) < 1)
239 posdif 11631 . . . . . . . . . . 11 (((1 / 𝑝) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝑝) < 1 ↔ 0 < (1 − (1 / 𝑝))))
240204, 130, 239sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) < 1 ↔ 0 < (1 − (1 / 𝑝))))
241238, 240mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < (1 − (1 / 𝑝)))
242 ledivmul 12019 . . . . . . . . 9 (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ∈ ℝ ∧ (1 / (𝑝 · (𝑝 − 1))) ∈ ℝ ∧ ((1 − (1 / 𝑝)) ∈ ℝ ∧ 0 < (1 − (1 / 𝑝)))) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1))))))
243232, 233, 235, 241, 242syl112anc 1376 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1))))))
244231, 243mpbird 257 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))))
245235, 241elrpd 12952 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 − (1 / 𝑝)) ∈ ℝ+)
246232, 245rerpdivcld 12986 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ∈ ℝ)
247246, 233, 123lemul2d 12999 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))) ≤ ((log‘𝑝) · (1 / (𝑝 · (𝑝 − 1))))))
248244, 247mpbid 232 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))) ≤ ((log‘𝑝) · (1 / (𝑝 · (𝑝 − 1)))))
249125adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈ ℂ)
250192nncnd 12162 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℂ)
251192nnne0d 12196 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ≠ 0)
252249, 250, 251divrecd 11921 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · (1 / (𝑝𝑘))))
253148adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℂ)
25451adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
255254nnne0d 12196 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ≠ 0)
256 nnz 12510 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
257256adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
258253, 255, 257exprecd 14079 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑝)↑𝑘) = (1 / (𝑝𝑘)))
259258oveq2d 7369 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (1 / (𝑝𝑘))))
260252, 259eqtr4d 2767 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
261171, 260sylan2 593 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
262261sumeq2dv 15627 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
263171nnnn0d 12463 . . . . . . . . 9 (𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ0)
264 expcl 14004 . . . . . . . . 9 (((1 / 𝑝) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
265213, 263, 264syl2an 596 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
266189, 125, 265fsummulc2 15709 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
267 fzval3 13655 . . . . . . . . . . 11 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ → (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)))
268200, 267syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)))
269268sumeq1d 15625 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = Σ𝑘 ∈ (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘))
270204, 238ltned 11270 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ≠ 1)
271 2nn0 12419 . . . . . . . . . . 11 2 ∈ ℕ0
272271a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 2 ∈ ℕ0)
273 eluzp1p1 12781 . . . . . . . . . . . 12 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ (ℤ‘1) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ (ℤ‘(1 + 1)))
274137, 273syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ (ℤ‘(1 + 1)))
275 df-2 12209 . . . . . . . . . . . 12 2 = (1 + 1)
276275fveq2i 6829 . . . . . . . . . . 11 (ℤ‘2) = (ℤ‘(1 + 1))
277274, 276eleqtrrdi 2839 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ (ℤ‘2))
278213, 270, 272, 277geoserg 15791 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
279269, 278eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
280279oveq2d 7369 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))))
281262, 266, 2803eqtr2d 2770 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))))
282111nncnd 12162 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ∈ ℂ)
283111nnne0d 12196 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ≠ 0)
284125, 282, 283divrecd 11921 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) = ((log‘𝑝) · (1 / (𝑝 · (𝑝 − 1)))))
285248, 281, 2843brtr4d 5127 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1))))
286198, 285eqbrtrd 5117 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1))))
28783, 105, 112, 286fsumle 15724 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ≤ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))))
288 elfzuz 13441 . . . . . . . . . . 11 (𝑝 ∈ (2...((abs‘𝐴) + 1)) → 𝑝 ∈ (ℤ‘2))
289 eluz2nn 12807 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℕ)
290288, 289syl 17 . . . . . . . . . 10 (𝑝 ∈ (2...((abs‘𝐴) + 1)) → 𝑝 ∈ ℕ)
291290adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈ ℕ)
292291nnred 12161 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈ ℝ)
293288adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈ (ℤ‘2))
294 eluz2gt1 12839 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
295293, 294syl 17 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 1 < 𝑝)
296292, 295rplogcld 26554 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (log‘𝑝) ∈ ℝ+)
297293, 109syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 − 1) ∈ ℕ)
298291, 297nnmulcld 12199 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 · (𝑝 − 1)) ∈ ℕ)
299298nnrpd 12953 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 · (𝑝 − 1)) ∈ ℝ+)
300296, 299rpdivcld 12972 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ+)
301300rpred 12955 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
30247, 301fsumrecl 15659 . . . 4 (𝐴 ∈ ℤ → Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
303300rpge0d 12959 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 0 ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1))))
30447, 301, 303, 82fsumless 15721 . . . 4 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))))
305 rplogsumlem1 27411 . . . . 5 (((abs‘𝐴) + 1) ∈ ℕ → Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2)
30675, 305syl 17 . . . 4 (𝐴 ∈ ℤ → Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2)
307113, 302, 115, 304, 306letrd 11291 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2)
308106, 113, 115, 287, 307letrd 11291 . 2 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ≤ 2)
30946, 308eqbrtrd 5117 1 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cin 3904  ifcif 4478   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cq 12867  +crp 12911  [,]cicc 13269  ...cfz 13428  ..^cfzo 13575  cfl 13712  cexp 13986  abscabs 15159  Σcsu 15611  cprime 16600  logclog 26479  Λcvma 27018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482  df-vma 27024
This theorem is referenced by:  rplogsum  27454
  Copyright terms: Public domain W3C validator