MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem4 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem4 27639
Description: Lemma for pntrlog2bnd 27643. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
Assertion
Ref Expression
pntrlog2bndlem4 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥   𝑆,𝑛,𝑥   𝑅,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem4
Dummy variables 𝑐 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 13414 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 13036 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11260 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13443 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11407 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13114 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1110rprege0d 13082 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
12 flge0nn0 13857 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
1311, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℕ0)
14 nn0p1nn 12563 . . . . . . . . . . . . . . . . . . . 20 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℕ)
1615nnrpd 13073 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℝ+)
1710, 16rpdivcld 13092 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ+)
18 pntrlog2bnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1918pntrval 27621 . . . . . . . . . . . . . . . . 17 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))))
2017, 19syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))))
212, 15nndivred 12318 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ)
22 2re 12338 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
2322a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
24 flltp1 13837 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1))
252, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1))
2615nncnd 12280 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℂ)
2726mulridd 11276 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · 1) = ((⌊‘𝑥) + 1))
2825, 27breqtrrd 5176 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) · 1))
292, 5, 16ltdivmuld 13126 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) · 1)))
3028, 29mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1)
31 1lt2 12435 . . . . . . . . . . . . . . . . . . . 20 1 < 2
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 2)
3321, 5, 23, 30, 32lttrd 11420 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2)
34 chpeq0 27267 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
3521, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
3633, 35mpbird 257 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0)
3736oveq1d 7446 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))) = (0 − (𝑥 / ((⌊‘𝑥) + 1))))
3820, 37eqtrd 2775 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = (0 − (𝑥 / ((⌊‘𝑥) + 1))))
3938fveq2d 6911 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) = (abs‘(0 − (𝑥 / ((⌊‘𝑥) + 1)))))
40 0red 11262 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ∈ ℝ)
4117rpge0d 13079 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 / ((⌊‘𝑥) + 1)))
4240, 21, 41abssuble0d 15468 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(0 − (𝑥 / ((⌊‘𝑥) + 1)))) = ((𝑥 / ((⌊‘𝑥) + 1)) − 0))
4321recnd 11287 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℂ)
4443subid1d 11607 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) − 0) = (𝑥 / ((⌊‘𝑥) + 1)))
4539, 42, 443eqtrd 2779 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) = (𝑥 / ((⌊‘𝑥) + 1)))
4613nn0red 12586 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℝ)
47 pntsval.1 . . . . . . . . . . . . . . . . 17 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
4847pntsval2 27635 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℝ → (𝑆‘(⌊‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
4946, 48syl 17 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(⌊‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
5013nn0cnd 12587 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℂ)
51 1cnd 11254 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
5250, 51pncand 11619 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
5352fveq2d 6911 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(((⌊‘𝑥) + 1) − 1)) = (𝑆‘(⌊‘𝑥)))
5447pntsval2 27635 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
552, 54syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
56 flidm 13846 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (⌊‘(⌊‘𝑥)) = (⌊‘𝑥))
572, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘(⌊‘𝑥)) = (⌊‘𝑥))
5857oveq2d 7447 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(⌊‘𝑥))) = (1...(⌊‘𝑥)))
5958sumeq1d 15733 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
6055, 59eqtr4d 2778 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
6149, 53, 603eqtr4d 2785 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(((⌊‘𝑥) + 1) − 1)) = (𝑆𝑥))
6252fveq2d 6911 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(((⌊‘𝑥) + 1) − 1)) = (𝑇‘(⌊‘𝑥)))
6362oveq2d 7447 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))) = (2 · (𝑇‘(⌊‘𝑥))))
6461, 63oveq12d 7449 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1)))) = ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))))
6545, 64oveq12d 7449 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
662recnd 11287 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
6766div1d 12033 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
6867fveq2d 6911 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) = (𝑅𝑥))
6918pntrf 27622 . . . . . . . . . . . . . . . . . . 19 𝑅:ℝ+⟶ℝ
7069ffvelcdmi 7103 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
7110, 70syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
7268, 71eqeltrd 2839 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) ∈ ℝ)
7372recnd 11287 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) ∈ ℂ)
7473abscld 15472 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / 1))) ∈ ℝ)
7574recnd 11287 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / 1))) ∈ ℂ)
7675mul01d 11458 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅‘(𝑥 / 1))) · 0) = 0)
7765, 76oveq12d 7449 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − 0))
7847pntsf 27632 . . . . . . . . . . . . . . . . 17 𝑆:ℝ⟶ℝ
7978ffvelcdmi 7103 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (𝑆𝑥) ∈ ℝ)
802, 79syl 17 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) ∈ ℝ)
81 pntrlog2bnd.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
82 relogcl 26632 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+ → (log‘𝑎) ∈ ℝ)
83 remulcl 11238 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ ∧ (log‘𝑎) ∈ ℝ) → (𝑎 · (log‘𝑎)) ∈ ℝ)
8482, 83sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (𝑎 · (log‘𝑎)) ∈ ℝ)
85 0red 11262 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ ¬ 𝑎 ∈ ℝ+) → 0 ∈ ℝ)
8684, 85ifclda 4566 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) ∈ ℝ)
8781, 86fmpti 7132 . . . . . . . . . . . . . . . . . 18 𝑇:ℝ⟶ℝ
8887ffvelcdmi 7103 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℝ → (𝑇‘(⌊‘𝑥)) ∈ ℝ)
8946, 88syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) ∈ ℝ)
9023, 89remulcld 11289 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ∈ ℝ)
9180, 90resubcld 11689 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) ∈ ℝ)
9221, 91remulcld 11289 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) ∈ ℝ)
9392recnd 11287 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) ∈ ℂ)
9493subid1d 11607 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − 0) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
9577, 94eqtrd 2775 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
962flcld 13835 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℤ)
97 fzval3 13770 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
9896, 97syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
9998eqcomd 2741 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
10010adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
101 elfznn 13590 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
102101adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
103102nnrpd 13073 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
104100, 103rpdivcld 13092 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
10569ffvelcdmi 7103 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
107106recnd 11287 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
108107abscld 15472 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
109108recnd 11287 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
1103a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
111103, 110rpaddcld 13090 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
112100, 111rpdivcld 13092 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
11369ffvelcdmi 7103 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
114112, 113syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
115114recnd 11287 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
116115abscld 15472 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℝ)
117116recnd 11287 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℂ)
118109, 117negsubdi2d 11634 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) = ((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))))
119118eqcomd 2741 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = -((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))))
120102nncnd 12280 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
121 1cnd 11254 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
122120, 121pncand 11619 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
123122fveq2d 6911 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘((𝑛 + 1) − 1)) = (𝑆𝑛))
124122fveq2d 6911 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘((𝑛 + 1) − 1)) = (𝑇𝑛))
125 rpre 13041 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
126 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑛 → (𝑎 ∈ ℝ+𝑛 ∈ ℝ+))
127 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑛𝑎 = 𝑛)
128 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
129127, 128oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛)))
130126, 129ifbieq1d 4555 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
131 ovex 7464 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 · (log‘𝑛)) ∈ V
132 c0ex 11253 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
133131, 132ifex 4581 . . . . . . . . . . . . . . . . . . . . 21 if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) ∈ V
134130, 81, 133fvmpt 7016 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
135125, 134syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
136 iftrue 4537 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) = (𝑛 · (log‘𝑛)))
137135, 136eqtrd 2775 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ+ → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
138103, 137syl 17 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
139124, 138eqtrd 2775 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘((𝑛 + 1) − 1)) = (𝑛 · (log‘𝑛)))
140139oveq2d 7447 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘((𝑛 + 1) − 1))) = (2 · (𝑛 · (log‘𝑛))))
141123, 140oveq12d 7449 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) = ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))
142119, 141oveq12d 7449 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = (-((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
143108, 116resubcld 11689 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℝ)
144143recnd 11287 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℂ)
145102nnred 12279 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
14678ffvelcdmi 7103 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑆𝑛) ∈ ℝ)
147145, 146syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℝ)
14822a1i 11 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℝ)
149103relogcld 26680 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
150145, 149remulcld 11289 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (log‘𝑛)) ∈ ℝ)
151148, 150remulcld 11289 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑛 · (log‘𝑛))) ∈ ℝ)
152147, 151resubcld 11689 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℝ)
153152recnd 11287 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℂ)
154144, 153mulneg1d 11714 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (-((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = -(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
155142, 154eqtrd 2775 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = -(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
15699, 155sumeq12rdv 15740 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
157 fzfid 14011 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
158143, 152remulcld 11289 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
159158recnd 11287 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
160157, 159fsumneg 15820 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))-(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
161156, 160eqtrd 2775 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
16295, 161oveq12d 7449 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
163 oveq2 7439 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛))
164163fveq2d 6911 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / 𝑛)))
165164fveq2d 6911 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 𝑛))))
166 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑆‘(𝑚 − 1)) = (𝑆‘(𝑛 − 1)))
167 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑇‘(𝑚 − 1)) = (𝑇‘(𝑛 − 1)))
168167oveq2d 7447 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘(𝑛 − 1))))
169166, 168oveq12d 7449 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))
170165, 169jca 511 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 𝑛))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))))
171 oveq2 7439 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1)))
172171fveq2d 6911 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / (𝑛 + 1))))
173172fveq2d 6911 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))
174 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (𝑆‘(𝑚 − 1)) = (𝑆‘((𝑛 + 1) − 1)))
175 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑇‘(𝑚 − 1)) = (𝑇‘((𝑛 + 1) − 1)))
176175oveq2d 7447 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘((𝑛 + 1) − 1))))
177174, 176oveq12d 7449 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))
178173, 177jca 511 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))))
179 oveq2 7439 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1))
180179fveq2d 6911 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / 1)))
181180fveq2d 6911 . . . . . . . . . . . 12 (𝑚 = 1 → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 1))))
182 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
183 1m1e0 12336 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
184182, 183eqtrdi 2791 . . . . . . . . . . . . . . . 16 (𝑚 = 1 → (𝑚 − 1) = 0)
185184fveq2d 6911 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (𝑆‘(𝑚 − 1)) = (𝑆‘0))
186 0re 11261 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
187 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 0 → (⌊‘𝑎) = (⌊‘0))
188 0z 12622 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℤ
189 flid 13845 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ ℤ → (⌊‘0) = 0)
190188, 189ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (⌊‘0) = 0
191187, 190eqtrdi 2791 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 0 → (⌊‘𝑎) = 0)
192191oveq2d 7447 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → (1...(⌊‘𝑎)) = (1...0))
193 fz10 13582 . . . . . . . . . . . . . . . . . . . 20 (1...0) = ∅
194192, 193eqtrdi 2791 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → (1...(⌊‘𝑎)) = ∅)
195194sumeq1d 15733 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑖 ∈ ∅ ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
196 sum0 15754 . . . . . . . . . . . . . . . . . 18 Σ𝑖 ∈ ∅ ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = 0
197195, 196eqtrdi 2791 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = 0)
198197, 47, 132fvmpt 7016 . . . . . . . . . . . . . . . 16 (0 ∈ ℝ → (𝑆‘0) = 0)
199186, 198ax-mp 5 . . . . . . . . . . . . . . 15 (𝑆‘0) = 0
200185, 199eqtrdi 2791 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑆‘(𝑚 − 1)) = 0)
201184fveq2d 6911 . . . . . . . . . . . . . . . . 17 (𝑚 = 1 → (𝑇‘(𝑚 − 1)) = (𝑇‘0))
202 rpne0 13049 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+𝑎 ≠ 0)
203202necon2bi 2969 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → ¬ 𝑎 ∈ ℝ+)
204203iffalsed 4542 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
205204, 81, 132fvmpt 7016 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (𝑇‘0) = 0)
206186, 205ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘0) = 0
207201, 206eqtrdi 2791 . . . . . . . . . . . . . . . 16 (𝑚 = 1 → (𝑇‘(𝑚 − 1)) = 0)
208207oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (2 · (𝑇‘(𝑚 − 1))) = (2 · 0))
209 2t0e0 12433 . . . . . . . . . . . . . . 15 (2 · 0) = 0
210208, 209eqtrdi 2791 . . . . . . . . . . . . . 14 (𝑚 = 1 → (2 · (𝑇‘(𝑚 − 1))) = 0)
211200, 210oveq12d 7449 . . . . . . . . . . . . 13 (𝑚 = 1 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = (0 − 0))
212 0m0e0 12384 . . . . . . . . . . . . 13 (0 − 0) = 0
213211, 212eqtrdi 2791 . . . . . . . . . . . 12 (𝑚 = 1 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = 0)
214181, 213jca 511 . . . . . . . . . . 11 (𝑚 = 1 → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 1))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = 0))
215 oveq2 7439 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1)))
216215fveq2d 6911 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))))
217216fveq2d 6911 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))))
218 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (𝑆‘(𝑚 − 1)) = (𝑆‘(((⌊‘𝑥) + 1) − 1)))
219 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑇‘(𝑚 − 1)) = (𝑇‘(((⌊‘𝑥) + 1) − 1)))
220219oveq2d 7447 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))
221218, 220oveq12d 7449 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1)))))
222217, 221jca 511 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))))
223 nnuz 12919 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
22415, 223eleqtrdi 2849 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
22510adantr 480 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑥 ∈ ℝ+)
226 elfznn 13590 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
227226adantl 481 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
228227nnrpd 13073 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ+)
229225, 228rpdivcld 13092 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑥 / 𝑚) ∈ ℝ+)
23069ffvelcdmi 7103 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑚)) ∈ ℝ)
231229, 230syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑅‘(𝑥 / 𝑚)) ∈ ℝ)
232231recnd 11287 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑅‘(𝑥 / 𝑚)) ∈ ℂ)
233232abscld 15472 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (abs‘(𝑅‘(𝑥 / 𝑚))) ∈ ℝ)
234233recnd 11287 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (abs‘(𝑅‘(𝑥 / 𝑚))) ∈ ℂ)
235227nnred 12279 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
236 1red 11260 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 1 ∈ ℝ)
237235, 236resubcld 11689 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
23878ffvelcdmi 7103 . . . . . . . . . . . . . 14 ((𝑚 − 1) ∈ ℝ → (𝑆‘(𝑚 − 1)) ∈ ℝ)
239237, 238syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑆‘(𝑚 − 1)) ∈ ℝ)
24022a1i 11 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 2 ∈ ℝ)
24187ffvelcdmi 7103 . . . . . . . . . . . . . . 15 ((𝑚 − 1) ∈ ℝ → (𝑇‘(𝑚 − 1)) ∈ ℝ)
242237, 241syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑇‘(𝑚 − 1)) ∈ ℝ)
243240, 242remulcld 11289 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (2 · (𝑇‘(𝑚 − 1))) ∈ ℝ)
244239, 243resubcld 11689 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) ∈ ℝ)
245244recnd 11287 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) ∈ ℂ)
246170, 178, 214, 222, 224, 234, 245fsumparts 15839 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))))
247147recnd 11287 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℂ)
24887ffvelcdmi 7103 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑇𝑛) ∈ ℝ)
249145, 248syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℝ)
250148, 249remulcld 11289 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇𝑛)) ∈ ℝ)
251250recnd 11287 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇𝑛)) ∈ ℂ)
252 1red 11260 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
253145, 252resubcld 11689 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
25478ffvelcdmi 7103 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ℝ → (𝑆‘(𝑛 − 1)) ∈ ℝ)
255253, 254syl 17 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℝ)
256255recnd 11287 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℂ)
25787ffvelcdmi 7103 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) ∈ ℝ)
258253, 257syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℝ)
259148, 258remulcld 11289 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘(𝑛 − 1))) ∈ ℝ)
260259recnd 11287 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘(𝑛 − 1))) ∈ ℂ)
261247, 251, 256, 260sub4d 11667 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (2 · (𝑇𝑛))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1))))))
262124oveq2d 7447 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘((𝑛 + 1) − 1))) = (2 · (𝑇𝑛)))
263123, 262oveq12d 7449 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) = ((𝑆𝑛) − (2 · (𝑇𝑛))))
264263oveq1d 7446 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (2 · (𝑇𝑛))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))))
265 2cnd 12342 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
266249recnd 11287 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℂ)
267258recnd 11287 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℂ)
268265, 266, 267subdid 11717 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) = ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1)))))
269268oveq2d 7447 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1))))))
270261, 264, 2693eqtr4d 2785 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
271270oveq2d 7447 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
27299, 271sumeq12rdv 15740 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
273246, 272eqtr3d 2777 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
274157, 159fsumcl 15766 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
27593, 274subnegd 11625 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
276162, 273, 2753eqtr3rd 2784 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
27710relogcld 26680 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
278277recnd 11287 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
27966, 278mulcomd 11280 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) = ((log‘𝑥) · 𝑥))
280276, 279oveq12d 7449 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / ((log‘𝑥) · 𝑥)))
281147, 255resubcld 11689 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℝ)
282249, 258resubcld 11689 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℝ)
283148, 282remulcld 11289 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
284281, 283resubcld 11689 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℝ)
285108, 284remulcld 11289 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
286157, 285fsumrecl 15767 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
287286recnd 11287 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℂ)
2882, 8rplogcld 26686 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
289288rpne0d 13080 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
29010rpne0d 13080 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
291287, 278, 66, 289, 290divdiv1d 12072 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / ((log‘𝑥) · 𝑥)))
292280, 291eqtr4d 2778 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥))
293292oveq2d 7447 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥)))
29471recnd 11287 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
295294abscld 15472 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
296295, 277remulcld 11289 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
297108, 281remulcld 11289 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
298157, 297fsumrecl 15767 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
299298, 288rerpdivcld 13106 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℝ)
300296, 299resubcld 11689 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℝ)
301300recnd 11287 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℂ)
302287, 278, 289divcld 12041 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) ∈ ℂ)
303301, 302, 66, 290divdird 12079 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥)))
304296recnd 11287 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
305299recnd 11287 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℂ)
306304, 305, 302subsubd 11646 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))))
307 2cnd 12342 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
308266, 267subcld 11618 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℂ)
309109, 308mulcld 11279 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
310157, 307, 309fsummulc2 15817 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
311281recnd 11287 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℂ)
312265, 308mulcld 11279 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
313311, 312nncand 11623 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) = (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))
314313oveq2d 7447 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
315284recnd 11287 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℂ)
316109, 311, 315subdid 11717 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))))
317109, 265, 308mul12d 11468 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = (2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
318314, 316, 3173eqtr3d 2783 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
319318sumeq2dv 15735 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
320297recnd 11287 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℂ)
321285recnd 11287 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℂ)
322157, 320, 321fsumsub 15821 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))))
323310, 319, 3223eqtr2rd 2782 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
324323oveq1d 7446 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) / (log‘𝑥)) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) / (log‘𝑥)))
325298recnd 11287 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℂ)
326325, 287, 278, 289divsubdird 12080 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))))
327108, 282remulcld 11289 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
328157, 327fsumrecl 15767 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
329328recnd 11287 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
330307, 329, 278, 289div23d 12078 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
331324, 326, 3303eqtr3d 2783 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
332331oveq2d 7447 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
333306, 332eqtr3d 2777 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
334333oveq1d 7446 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
335293, 303, 3343eqtr2d 2781 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
336335mpteq2dva 5248 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)))
337300, 10rerpdivcld 13106 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ∈ ℝ)
338157, 158fsumrecl 15767 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
33992, 338readdcld 11288 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
34010, 288rpmulcld 13091 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
341339, 340rerpdivcld 13106 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
34247, 18pntrlog2bndlem1 27636 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
343342a1i 11 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1))
344340rpcnd 13077 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
345340rpne0d 13080 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
34693, 274, 344, 345divdird 12079 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
34791recnd 11287 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) ∈ ℂ)
34843, 347, 344, 345divassd 12076 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) = ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))))
349348oveq1d 7446 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) = (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
350346, 349eqtrd 2775 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
351350mpteq2dva 5248 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))))))
35291, 340rerpdivcld 13106 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
35321, 352remulcld 11289 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
354338, 340rerpdivcld 13106 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
355 ioossre 13445 . . . . . . . . 9 (1(,)+∞) ⊆ ℝ
356355a1i 11 . . . . . . . 8 (⊤ → (1(,)+∞) ⊆ ℝ)
357 1red 11260 . . . . . . . 8 (⊤ → 1 ∈ ℝ)
35821, 5, 30ltled 11407 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ≤ 1)
359358adantrr 717 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (𝑥 / ((⌊‘𝑥) + 1)) ≤ 1)
360356, 21, 357, 357, 359ello1d 15556 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (𝑥 / ((⌊‘𝑥) + 1))) ∈ ≤𝑂(1))
36180recnd 11287 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) ∈ ℂ)
36290recnd 11287 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ∈ ℂ)
363361, 362, 344, 345divsubdird 12080 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))) = (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))))
364363mpteq2dva 5248 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))))
36580, 340rerpdivcld 13106 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / (𝑥 · (log‘𝑥))) ∈ ℝ)
36690, 340rerpdivcld 13106 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
367 2cnd 12342 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℂ)
368 o1const 15653 . . . . . . . . . . . 12 (((1(,)+∞) ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
369355, 367, 368sylancr 587 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
370365recnd 11287 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / (𝑥 · (log‘𝑥))) ∈ ℂ)
37180, 10rerpdivcld 13106 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / 𝑥) ∈ ℝ)
372371recnd 11287 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / 𝑥) ∈ ℂ)
373307, 278mulcld 11279 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℂ)
374372, 373, 278, 289divsubdird 12080 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) / (log‘𝑥)) = ((((𝑆𝑥) / 𝑥) / (log‘𝑥)) − ((2 · (log‘𝑥)) / (log‘𝑥))))
37523, 277remulcld 11289 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
376371, 375resubcld 11689 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
377376recnd 11287 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
378377, 278, 289divrecd 12044 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) / (log‘𝑥)) = ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥))))
379361, 66, 278, 290, 289divdiv1d 12072 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) / (log‘𝑥)) = ((𝑆𝑥) / (𝑥 · (log‘𝑥))))
380307, 278, 289divcan4d 12047 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (log‘𝑥)) / (log‘𝑥)) = 2)
381379, 380oveq12d 7449 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) / (log‘𝑥)) − ((2 · (log‘𝑥)) / (log‘𝑥))) = (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2))
382374, 378, 3813eqtr3rd 2784 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2) = ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥))))
383382mpteq2dva 5248 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2)) = (𝑥 ∈ (1(,)+∞) ↦ ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥)))))
3845, 288rerpdivcld 13106 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
38510ex 412 . . . . . . . . . . . . . . . 16 (⊤ → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
386385ssrdv 4001 . . . . . . . . . . . . . . 15 (⊤ → (1(,)+∞) ⊆ ℝ+)
38747selbergs 27633 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
388387a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ℝ+ ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
389386, 388o1res2 15596 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
390 divlogrlim 26692 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
391 rlimo1 15650 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
392390, 391mp1i 13 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
393376, 384, 389, 392o1mul2 15658 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
394383, 393eqeltrd 2839 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2)) ∈ 𝑂(1))
395370, 307, 394o1dif 15663 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((𝑆𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1)))
396369, 395mpbird 257 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((𝑆𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
39722a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℝ)
3982, 277remulcld 11289 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
399 2rp 13037 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
400399a1i 11 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
401400rpge0d 13079 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
402 flge1nn 13858 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
4032, 9, 402syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℕ)
404403nnrpd 13073 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℝ+)
405 rpre 13041 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
406 eleq1 2827 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (⌊‘𝑥) → (𝑎 ∈ ℝ+ ↔ (⌊‘𝑥) ∈ ℝ+))
407 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (⌊‘𝑥) → 𝑎 = (⌊‘𝑥))
408 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (⌊‘𝑥) → (log‘𝑎) = (log‘(⌊‘𝑥)))
409407, 408oveq12d 7449 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (⌊‘𝑥) → (𝑎 · (log‘𝑎)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
410406, 409ifbieq1d 4555 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (⌊‘𝑥) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
411 ovex 7464 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑥) · (log‘(⌊‘𝑥))) ∈ V
412411, 132ifex 4581 . . . . . . . . . . . . . . . . . . . 20 if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0) ∈ V
413410, 81, 412fvmpt 7016 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ ℝ → (𝑇‘(⌊‘𝑥)) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
414405, 413syl 17 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑥) ∈ ℝ+ → (𝑇‘(⌊‘𝑥)) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
415 iftrue 4537 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑥) ∈ ℝ+ → if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
416414, 415eqtrd 2775 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℝ+ → (𝑇‘(⌊‘𝑥)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
417404, 416syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
418404relogcld 26680 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘(⌊‘𝑥)) ∈ ℝ)
41913nn0ge0d 12588 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (⌊‘𝑥))
420403nnge1d 12312 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ (⌊‘𝑥))
42146, 420logge0d 26687 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (log‘(⌊‘𝑥)))
422 flle 13836 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
4232, 422syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ≤ 𝑥)
424404, 10logled 26684 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) ≤ 𝑥 ↔ (log‘(⌊‘𝑥)) ≤ (log‘𝑥)))
425423, 424mpbid 232 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘(⌊‘𝑥)) ≤ (log‘𝑥))
42646, 2, 418, 277, 419, 421, 423, 425lemul12ad 12208 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) · (log‘(⌊‘𝑥))) ≤ (𝑥 · (log‘𝑥)))
427417, 426eqbrtrd 5170 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) ≤ (𝑥 · (log‘𝑥)))
42889, 398, 23, 401, 427lemul2ad 12206 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ≤ (2 · (𝑥 · (log‘𝑥))))
42990, 23, 340ledivmul2d 13129 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2 ↔ (2 · (𝑇‘(⌊‘𝑥))) ≤ (2 · (𝑥 · (log‘𝑥)))))
430428, 429mpbird 257 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2)
431430adantrr 717 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2)
432356, 366, 357, 397, 431ello1d 15556 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
433 0red 11262 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℝ)
43446, 418, 419, 421mulge0d 11838 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
435434, 417breqtrrd 5176 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑇‘(⌊‘𝑥)))
43623, 89, 401, 435mulge0d 11838 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 · (𝑇‘(⌊‘𝑥))))
43790, 340, 436divge0d 13115 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))
438366, 433, 437o1lo12 15571 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1)))
439432, 438mpbird 257 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
440365, 366, 396, 439o1sub2 15659 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
441364, 440eqeltrd 2839 . . . . . . . 8 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
442352, 441o1lo1d 15572 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
44321, 352, 360, 442, 41lo1mul 15661 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
44447selbergsb 27634 . . . . . . . 8 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐
445 simpl 482 . . . . . . . . . 10 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → 𝑐 ∈ ℝ+)
446 simpr 484 . . . . . . . . . 10 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐)
44747, 18, 445, 446pntrlog2bndlem3 27638 . . . . . . . . 9 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
448447rexlimiva 3145 . . . . . . . 8 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
449444, 448mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
450354, 449o1lo1d 15572 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
451353, 354, 443, 450lo1add 15660 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
452351, 451eqeltrd 2839 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
453337, 341, 343, 452lo1add 15660 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
454336, 453eqeltrrd 2840 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1))
455454mptru 1544 1 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2106  wral 3059  wrex 3068  {crab 3433  wss 3963  c0 4339  ifcif 4531   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  +crp 13032  (,)cioo 13384  [,)cico 13386  ...cfz 13544  ..^cfzo 13691  cfl 13827  abscabs 15270  𝑟 crli 15518  𝑂(1)co1 15519  ≤𝑂(1)clo1 15520  Σcsu 15719  cdvds 16287  logclog 26611  Λcvma 27150  ψcchp 27151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-o1 15523  df-lo1 15524  df-sum 15720  df-ef 16100  df-e 16101  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-ulm 26435  df-log 26613  df-cxp 26614  df-atan 26925  df-em 27051  df-cht 27155  df-vma 27156  df-chp 27157  df-ppi 27158  df-mu 27159
This theorem is referenced by:  pntrlog2bndlem5  27640
  Copyright terms: Public domain W3C validator