Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierswlem Structured version   Visualization version   GIF version

Theorem fourierswlem 42729
Description: The Fourier series for the square wave 𝐹 converges to 𝑌, a simpler expression for this special case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierswlem.t 𝑇 = (2 · π)
fourierswlem.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
fourierswlem.x 𝑋 ∈ ℝ
fourierswlem.y 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))
Assertion
Ref Expression
fourierswlem 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
Distinct variable groups:   𝑥,𝑇   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑌(𝑥)

Proof of Theorem fourierswlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → 2 ∥ (𝑋 / π))
2 2z 12002 . . . . . . . . . . . 12 2 ∈ ℤ
32a1i 11 . . . . . . . . . . 11 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → 2 ∈ ℤ)
4 fourierswlem.x . . . . . . . . . . . . . 14 𝑋 ∈ ℝ
5 pirp 25045 . . . . . . . . . . . . . 14 π ∈ ℝ+
6 mod0 13239 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ π ∈ ℝ+) → ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈ ℤ))
74, 5, 6mp2an 691 . . . . . . . . . . . . 13 ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈ ℤ)
87biimpi 219 . . . . . . . . . . . 12 ((𝑋 mod π) = 0 → (𝑋 / π) ∈ ℤ)
98adantr 484 . . . . . . . . . . 11 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑋 / π) ∈ ℤ)
10 divides 15600 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ (𝑋 / π) ∈ ℤ) → (2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π)))
113, 9, 10syl2anc 587 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π)))
121, 11mpbid 235 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π))
13 2cnd 11703 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → 2 ∈ ℂ)
14 picn 25043 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℂ
1514a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → π ∈ ℂ)
16 zcn 11974 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
1713, 15, 16mulassd 10651 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → ((2 · π) · 𝑘) = (2 · (π · 𝑘)))
1815, 16mulcld 10648 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (π · 𝑘) ∈ ℂ)
1913, 18mulcomd 10649 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (2 · (π · 𝑘)) = ((π · 𝑘) · 2))
2017, 19eqtrd 2859 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → ((2 · π) · 𝑘) = ((π · 𝑘) · 2))
2120adantr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((2 · π) · 𝑘) = ((π · 𝑘) · 2))
2215, 16, 13mulassd 10651 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → ((π · 𝑘) · 2) = (π · (𝑘 · 2)))
2322adantr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((π · 𝑘) · 2) = (π · (𝑘 · 2)))
24 id 22 . . . . . . . . . . . . . . . . . . 19 ((𝑘 · 2) = (𝑋 / π) → (𝑘 · 2) = (𝑋 / π))
2524eqcomd 2830 . . . . . . . . . . . . . . . . . 18 ((𝑘 · 2) = (𝑋 / π) → (𝑋 / π) = (𝑘 · 2))
2625adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / π) = (𝑘 · 2))
274recni 10642 . . . . . . . . . . . . . . . . . . 19 𝑋 ∈ ℂ
2827a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 ∈ ℂ)
2914a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ∈ ℂ)
3016adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈ ℂ)
31 2cnd 11703 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 2 ∈ ℂ)
3230, 31mulcld 10648 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑘 · 2) ∈ ℂ)
33 pire 25042 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ
34 pipos 25044 . . . . . . . . . . . . . . . . . . . 20 0 < π
3533, 34gt0ne0ii 11163 . . . . . . . . . . . . . . . . . . 19 π ≠ 0
3635a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ≠ 0)
3728, 29, 32, 36divmuld 11425 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((𝑋 / π) = (𝑘 · 2) ↔ (π · (𝑘 · 2)) = 𝑋))
3826, 37mpbid 235 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (π · (𝑘 · 2)) = 𝑋)
3921, 23, 383eqtrrd 2864 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 = ((2 · π) · 𝑘))
40 fourierswlem.t . . . . . . . . . . . . . . . 16 𝑇 = (2 · π)
4140a1i 11 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑇 = (2 · π))
4239, 41oveq12d 7158 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = (((2 · π) · 𝑘) / (2 · π)))
4313, 15mulcld 10648 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (2 · π) ∈ ℂ)
44 2ne0 11729 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
4544a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → 2 ≠ 0)
4635a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → π ≠ 0)
4713, 15, 45, 46mulne0d 11279 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (2 · π) ≠ 0)
4816, 43, 47divcan3d 11408 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((2 · π) · 𝑘) / (2 · π)) = 𝑘)
4948adantr 484 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (((2 · π) · 𝑘) / (2 · π)) = 𝑘)
5042, 49eqtrd 2859 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = 𝑘)
51 simpl 486 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈ ℤ)
5250, 51eqeltrd 2916 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ)
5352ex 416 . . . . . . . . . . 11 (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ))
5453a1i 11 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ)))
5554rexlimdv 3275 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ))
5612, 55mpd 15 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ)
57 2re 11699 . . . . . . . . . . . 12 2 ∈ ℝ
5857, 33remulcli 10644 . . . . . . . . . . 11 (2 · π) ∈ ℝ
5940, 58eqeltri 2912 . . . . . . . . . 10 𝑇 ∈ ℝ
60 2pos 11728 . . . . . . . . . . . 12 0 < 2
6157, 33, 60, 34mulgt0ii 10760 . . . . . . . . . . 11 0 < (2 · π)
6261, 40breqtrri 5076 . . . . . . . . . 10 0 < 𝑇
6359, 62elrpii 12380 . . . . . . . . 9 𝑇 ∈ ℝ+
64 mod0 13239 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ))
654, 63, 64mp2an 691 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ)
6656, 65sylibr 237 . . . . . . 7 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑋 mod 𝑇) = 0)
6766orcd 870 . . . . . 6 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π))
68 odd2np1 15681 . . . . . . . . . 10 ((𝑋 / π) ∈ ℤ → (¬ 2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π)))
697, 68sylbi 220 . . . . . . . . 9 ((𝑋 mod π) = 0 → (¬ 2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π)))
7069biimpa 480 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π))
7113, 16mulcld 10648 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (2 · 𝑘) ∈ ℂ)
7271adantr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (2 · 𝑘) ∈ ℂ)
73 1cnd 10623 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 1 ∈ ℂ)
7414a1i 11 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π ∈ ℂ)
7572, 73, 74adddird 10653 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (((2 · 𝑘) + 1) · π) = (((2 · 𝑘) · π) + (1 · π)))
7613, 16mulcomd 10649 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (2 · 𝑘) = (𝑘 · 2))
7776oveq1d 7155 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → ((2 · 𝑘) · π) = ((𝑘 · 2) · π))
7816, 13, 15mulassd 10651 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → ((𝑘 · 2) · π) = (𝑘 · (2 · π)))
7940eqcomi 2833 . . . . . . . . . . . . . . . . . . . 20 (2 · π) = 𝑇
8079a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (2 · π) = 𝑇)
8180oveq2d 7156 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (𝑘 · (2 · π)) = (𝑘 · 𝑇))
8277, 78, 813eqtrd 2863 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → ((2 · 𝑘) · π) = (𝑘 · 𝑇))
8314mulid2i 10633 . . . . . . . . . . . . . . . . . 18 (1 · π) = π
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (1 · π) = π)
8582, 84oveq12d 7158 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (((2 · 𝑘) · π) + (1 · π)) = ((𝑘 · 𝑇) + π))
8685adantr 484 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (((2 · 𝑘) · π) + (1 · π)) = ((𝑘 · 𝑇) + π))
8740, 43eqeltrid 2920 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → 𝑇 ∈ ℂ)
8816, 87mulcld 10648 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (𝑘 · 𝑇) ∈ ℂ)
8988, 15addcomd 10829 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇)))
9089adantr 484 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇)))
9175, 86, 903eqtrrd 2864 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (π + (𝑘 · 𝑇)) = (((2 · 𝑘) + 1) · π))
92 peano2cn 10799 . . . . . . . . . . . . . . . . 17 ((2 · 𝑘) ∈ ℂ → ((2 · 𝑘) + 1) ∈ ℂ)
9371, 92syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → ((2 · 𝑘) + 1) ∈ ℂ)
9493, 15mulcomd 10649 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((2 · 𝑘) + 1) · π) = (π · ((2 · 𝑘) + 1)))
9594adantr 484 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (((2 · 𝑘) + 1) · π) = (π · ((2 · 𝑘) + 1)))
96 id 22 . . . . . . . . . . . . . . . . 17 (((2 · 𝑘) + 1) = (𝑋 / π) → ((2 · 𝑘) + 1) = (𝑋 / π))
9796eqcomd 2830 . . . . . . . . . . . . . . . 16 (((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 / π) = ((2 · 𝑘) + 1))
9897adantl 485 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (𝑋 / π) = ((2 · 𝑘) + 1))
9927a1i 11 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 𝑋 ∈ ℂ)
10093adantr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((2 · 𝑘) + 1) ∈ ℂ)
10135a1i 11 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π ≠ 0)
10299, 74, 100, 101divmuld 11425 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((𝑋 / π) = ((2 · 𝑘) + 1) ↔ (π · ((2 · 𝑘) + 1)) = 𝑋))
10398, 102mpbid 235 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (π · ((2 · 𝑘) + 1)) = 𝑋)
10491, 95, 1033eqtrrd 2864 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 𝑋 = (π + (𝑘 · 𝑇)))
105104oveq1d 7155 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = ((π + (𝑘 · 𝑇)) mod 𝑇))
106 modcyc 13269 . . . . . . . . . . . . . 14 ((π ∈ ℝ ∧ 𝑇 ∈ ℝ+𝑘 ∈ ℤ) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇))
10733, 63, 106mp3an12 1448 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇))
108107adantr 484 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇))
10933a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π ∈ ℝ)
11063a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 𝑇 ∈ ℝ+)
111 0re 10630 . . . . . . . . . . . . . . 15 0 ∈ ℝ
112111, 33, 34ltleii 10750 . . . . . . . . . . . . . 14 0 ≤ π
113112a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 0 ≤ π)
114 2timesgt 41776 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → π < (2 · π))
1155, 114ax-mp 5 . . . . . . . . . . . . . . 15 π < (2 · π)
116115, 40breqtrri 5076 . . . . . . . . . . . . . 14 π < 𝑇
117116a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π < 𝑇)
118 modid 13259 . . . . . . . . . . . . 13 (((π ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ π ∧ π < 𝑇)) → (π mod 𝑇) = π)
119109, 110, 113, 117, 118syl22anc 837 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (π mod 𝑇) = π)
120105, 108, 1193eqtrd 2863 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = π)
121120ex 416 . . . . . . . . . 10 (𝑘 ∈ ℤ → (((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π))
122121a1i 11 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → (𝑘 ∈ ℤ → (((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π)))
123122rexlimdv 3275 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π))
12470, 123mpd 15 . . . . . . 7 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → (𝑋 mod 𝑇) = π)
125124olcd 871 . . . . . 6 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π))
12667, 125pm2.61dan 812 . . . . 5 ((𝑋 mod π) = 0 → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π))
127 0xr 10675 . . . . . . . 8 0 ∈ ℝ*
12833rexri 10686 . . . . . . . 8 π ∈ ℝ*
129 iocgtlb 41996 . . . . . . . 8 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → 0 < (𝑋 mod 𝑇))
130127, 128, 129mp3an12 1448 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (0(,]π) → 0 < (𝑋 mod 𝑇))
131130gt0ne0d 11191 . . . . . 6 ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≠ 0)
132131neneqd 3018 . . . . 5 ((𝑋 mod 𝑇) ∈ (0(,]π) → ¬ (𝑋 mod 𝑇) = 0)
133 pm2.53 848 . . . . . 6 (((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) → (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = π))
134133imp 410 . . . . 5 ((((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π)
135126, 132, 134syl2anr 599 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) = π)
136127a1i 11 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → 0 ∈ ℝ*)
137128a1i 11 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → π ∈ ℝ*)
138 modcl 13236 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) ∈ ℝ)
1394, 63, 138mp2an 691 . . . . . . . . . . . . . 14 (𝑋 mod 𝑇) ∈ ℝ
140139rexri 10686 . . . . . . . . . . . . 13 (𝑋 mod 𝑇) ∈ ℝ*
141140a1i 11 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈ ℝ*)
142 id 22 . . . . . . . . . . . . 13 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) = π)
14334, 142breqtrrid 5087 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → 0 < (𝑋 mod 𝑇))
14433eqlei2 10738 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ≤ π)
145136, 137, 141, 143, 144eliocd 42001 . . . . . . . . . . 11 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈ (0(,]π))
146145iftrued 4456 . . . . . . . . . 10 ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
147146adantl 485 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
148 oveq1 7147 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 mod 𝑇) = (𝑋 mod 𝑇))
149148breq1d 5059 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 mod 𝑇) < π ↔ (𝑋 mod 𝑇) < π))
150149ifbid 4470 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → if((𝑥 mod 𝑇) < π, 1, -1) = if((𝑋 mod 𝑇) < π, 1, -1))
151 fourierswlem.f . . . . . . . . . . . . 13 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
152 1ex 10624 . . . . . . . . . . . . . 14 1 ∈ V
153 negex 10871 . . . . . . . . . . . . . 14 -1 ∈ V
154152, 153ifex 4496 . . . . . . . . . . . . 13 if((𝑋 mod 𝑇) < π, 1, -1) ∈ V
155150, 151, 154fvmpt 6751 . . . . . . . . . . . 12 (𝑋 ∈ ℝ → (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1))
1564, 155ax-mp 5 . . . . . . . . . . 11 (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1)
157139a1i 11 . . . . . . . . . . . . . 14 ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ∈ ℝ)
158 id 22 . . . . . . . . . . . . . 14 ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) < π)
159157, 158ltned 10763 . . . . . . . . . . . . 13 ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ≠ π)
160159necon2bi 3043 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → ¬ (𝑋 mod 𝑇) < π)
161160iffalsed 4459 . . . . . . . . . . 11 ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) < π, 1, -1) = -1)
162156, 161syl5eq 2871 . . . . . . . . . 10 ((𝑋 mod 𝑇) = π → (𝐹𝑋) = -1)
163162adantl 485 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (𝐹𝑋) = -1)
164147, 163oveq12d 7158 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (1 + -1))
165 1pneg1e0 11744 . . . . . . . 8 (1 + -1) = 0
166164, 165syl6eq 2875 . . . . . . 7 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = 0)
167166oveq1d 7155 . . . . . 6 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = (0 / 2))
168167adantll 713 . . . . 5 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = (0 / 2))
169 2cn 11700 . . . . . . 7 2 ∈ ℂ
170169, 44div0i 11361 . . . . . 6 (0 / 2) = 0
171170a1i 11 . . . . 5 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → (0 / 2) = 0)
172 fourierswlem.y . . . . . . 7 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))
173 iftrue 4454 . . . . . . 7 ((𝑋 mod π) = 0 → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = 0)
174172, 173syl5req 2872 . . . . . 6 ((𝑋 mod π) = 0 → 0 = 𝑌)
175174ad2antlr 726 . . . . 5 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 0 = 𝑌)
176168, 171, 1753eqtrrd 2864 . . . 4 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
177135, 176mpdan 686 . . 3 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
178 iftrue 4454 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (0(,]π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
179178adantr 484 . . . . . 6 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
180139a1i 11 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ∈ ℝ)
18133a1i 11 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π ∈ ℝ)
182 iocleub 41997 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → (𝑋 mod 𝑇) ≤ π)
183127, 128, 182mp3an12 1448 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≤ π)
184183adantr 484 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ≤ π)
185 ax-1cn 10582 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
186185, 14mulcomi 10636 . . . . . . . . . . . . . . . . . . 19 (1 · π) = (π · 1)
18783, 186eqtr3i 2849 . . . . . . . . . . . . . . . . . 18 π = (π · 1)
188187oveq1i 7150 . . . . . . . . . . . . . . . . 17 (π + (π · (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π · (2 · (⌊‘(𝑋 / 𝑇)))))
189169, 14mulcomi 10636 . . . . . . . . . . . . . . . . . . . . 21 (2 · π) = (π · 2)
19040, 189eqtri 2847 . . . . . . . . . . . . . . . . . . . 20 𝑇 = (π · 2)
191190oveq1i 7150 . . . . . . . . . . . . . . . . . . 19 (𝑇 · (⌊‘(𝑋 / 𝑇))) = ((π · 2) · (⌊‘(𝑋 / 𝑇)))
192111, 62gtneii 10739 . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 ≠ 0
1934, 59, 192redivcli 11394 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 / 𝑇) ∈ ℝ
194 flcl 13160 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 / 𝑇) ∈ ℝ → (⌊‘(𝑋 / 𝑇)) ∈ ℤ)
195193, 194ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⌊‘(𝑋 / 𝑇)) ∈ ℤ
196 zcn 11974 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘(𝑋 / 𝑇)) ∈ ℤ → (⌊‘(𝑋 / 𝑇)) ∈ ℂ)
197195, 196ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (⌊‘(𝑋 / 𝑇)) ∈ ℂ
19814, 169, 197mulassi 10639 . . . . . . . . . . . . . . . . . . 19 ((π · 2) · (⌊‘(𝑋 / 𝑇))) = (π · (2 · (⌊‘(𝑋 / 𝑇))))
199191, 198eqtri 2847 . . . . . . . . . . . . . . . . . 18 (𝑇 · (⌊‘(𝑋 / 𝑇))) = (π · (2 · (⌊‘(𝑋 / 𝑇))))
200199oveq2i 7151 . . . . . . . . . . . . . . . . 17 (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = (π + (π · (2 · (⌊‘(𝑋 / 𝑇)))))
201169, 197mulcli 10635 . . . . . . . . . . . . . . . . . 18 (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ
20214, 185, 201adddii 10640 . . . . . . . . . . . . . . . . 17 (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π · (2 · (⌊‘(𝑋 / 𝑇)))))
203188, 200, 2023eqtr4ri 2858 . . . . . . . . . . . . . . . 16 (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇))))
204203a1i 11 . . . . . . . . . . . . . . 15 (π = (𝑋 mod 𝑇) → (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))))
205 id 22 . . . . . . . . . . . . . . . . 17 (π = (𝑋 mod 𝑇) → π = (𝑋 mod 𝑇))
206 modval 13234 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))))
2074, 63, 206mp2an 691 . . . . . . . . . . . . . . . . 17 (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇))))
208205, 207syl6eq 2875 . . . . . . . . . . . . . . . 16 (π = (𝑋 mod 𝑇) → π = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))))
209208oveq1d 7155 . . . . . . . . . . . . . . 15 (π = (𝑋 mod 𝑇) → (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇)))))
21027a1i 11 . . . . . . . . . . . . . . . 16 (π = (𝑋 mod 𝑇) → 𝑋 ∈ ℂ)
21159recni 10642 . . . . . . . . . . . . . . . . . 18 𝑇 ∈ ℂ
212211, 197mulcli 10635 . . . . . . . . . . . . . . . . 17 (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ
213212a1i 11 . . . . . . . . . . . . . . . 16 (π = (𝑋 mod 𝑇) → (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ)
214210, 213npcand 10988 . . . . . . . . . . . . . . 15 (π = (𝑋 mod 𝑇) → ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = 𝑋)
215204, 209, 2143eqtrrd 2864 . . . . . . . . . . . . . 14 (π = (𝑋 mod 𝑇) → 𝑋 = (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))))
216215oveq1d 7155 . . . . . . . . . . . . 13 (π = (𝑋 mod 𝑇) → (𝑋 / π) = ((π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) / π))
217185, 201addcli 10634 . . . . . . . . . . . . . 14 (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℂ
218217, 14, 35divcan3i 11373 . . . . . . . . . . . . 13 ((π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) / π) = (1 + (2 · (⌊‘(𝑋 / 𝑇))))
219216, 218syl6eq 2875 . . . . . . . . . . . 12 (π = (𝑋 mod 𝑇) → (𝑋 / π) = (1 + (2 · (⌊‘(𝑋 / 𝑇)))))
220 1z 12000 . . . . . . . . . . . . . 14 1 ∈ ℤ
221 zmulcl 12019 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ (⌊‘(𝑋 / 𝑇)) ∈ ℤ) → (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ)
2222, 195, 221mp2an 691 . . . . . . . . . . . . . 14 (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ
223 zaddcl 12010 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ) → (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℤ)
224220, 222, 223mp2an 691 . . . . . . . . . . . . 13 (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℤ
225224a1i 11 . . . . . . . . . . . 12 (π = (𝑋 mod 𝑇) → (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℤ)
226219, 225eqeltrd 2916 . . . . . . . . . . 11 (π = (𝑋 mod 𝑇) → (𝑋 / π) ∈ ℤ)
227226, 7sylibr 237 . . . . . . . . . 10 (π = (𝑋 mod 𝑇) → (𝑋 mod π) = 0)
228227necon3bi 3039 . . . . . . . . 9 (¬ (𝑋 mod π) = 0 → π ≠ (𝑋 mod 𝑇))
229228adantl 485 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π ≠ (𝑋 mod 𝑇))
230180, 181, 184, 229leneltd 10781 . . . . . . 7 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) < π)
231 iftrue 4454 . . . . . . . 8 ((𝑋 mod 𝑇) < π → if((𝑋 mod 𝑇) < π, 1, -1) = 1)
232156, 231syl5eq 2871 . . . . . . 7 ((𝑋 mod 𝑇) < π → (𝐹𝑋) = 1)
233230, 232syl 17 . . . . . 6 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹𝑋) = 1)
234179, 233oveq12d 7158 . . . . 5 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (1 + 1))
235234oveq1d 7155 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = ((1 + 1) / 2))
236 1p1e2 11750 . . . . . . 7 (1 + 1) = 2
237236oveq1i 7150 . . . . . 6 ((1 + 1) / 2) = (2 / 2)
238 2div2e1 11766 . . . . . 6 (2 / 2) = 1
239237, 238eqtr2i 2848 . . . . 5 1 = ((1 + 1) / 2)
240233, 239syl6req 2876 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → ((1 + 1) / 2) = (𝐹𝑋))
241 iffalse 4457 . . . . . 6 (¬ (𝑋 mod π) = 0 → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = (𝐹𝑋))
242172, 241syl5req 2872 . . . . 5 (¬ (𝑋 mod π) = 0 → (𝐹𝑋) = 𝑌)
243242adantl 485 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹𝑋) = 𝑌)
244235, 240, 2433eqtrrd 2864 . . 3 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
245177, 244pm2.61dan 812 . 2 ((𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
246131necon2bi 3043 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 → ¬ (𝑋 mod 𝑇) ∈ (0(,]π))
247246iffalsed 4459 . . . . . . 7 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = -1)
248 id 22 . . . . . . . . . 10 ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = 0)
249248, 34eqbrtrdi 5088 . . . . . . . . 9 ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) < π)
250249iftrued 4456 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) < π, 1, -1) = 1)
251156, 250syl5eq 2871 . . . . . . 7 ((𝑋 mod 𝑇) = 0 → (𝐹𝑋) = 1)
252247, 251oveq12d 7158 . . . . . 6 ((𝑋 mod 𝑇) = 0 → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (-1 + 1))
253252oveq1d 7155 . . . . 5 ((𝑋 mod 𝑇) = 0 → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = ((-1 + 1) / 2))
254 neg1cn 11739 . . . . . . . . 9 -1 ∈ ℂ
255185, 254, 165addcomli 10819 . . . . . . . 8 (-1 + 1) = 0
256255oveq1i 7150 . . . . . . 7 ((-1 + 1) / 2) = (0 / 2)
257256, 170eqtri 2847 . . . . . 6 ((-1 + 1) / 2) = 0
258257a1i 11 . . . . 5 ((𝑋 mod 𝑇) = 0 → ((-1 + 1) / 2) = 0)
25940oveq2i 7151 . . . . . . . . . . . . 13 (𝑋 / 𝑇) = (𝑋 / (2 · π))
260 2cnne0 11835 . . . . . . . . . . . . . 14 (2 ∈ ℂ ∧ 2 ≠ 0)
26114, 35pm3.2i 474 . . . . . . . . . . . . . 14 (π ∈ ℂ ∧ π ≠ 0)
262 divdiv1 11338 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((𝑋 / 2) / π) = (𝑋 / (2 · π)))
26327, 260, 261, 262mp3an 1458 . . . . . . . . . . . . 13 ((𝑋 / 2) / π) = (𝑋 / (2 · π))
26427, 169, 14, 44, 35divdiv32i 11382 . . . . . . . . . . . . 13 ((𝑋 / 2) / π) = ((𝑋 / π) / 2)
265259, 263, 2643eqtr2i 2853 . . . . . . . . . . . 12 (𝑋 / 𝑇) = ((𝑋 / π) / 2)
266265oveq2i 7151 . . . . . . . . . . 11 (2 · (𝑋 / 𝑇)) = (2 · ((𝑋 / π) / 2))
26727, 14, 35divcli 11369 . . . . . . . . . . . 12 (𝑋 / π) ∈ ℂ
268267, 169, 44divcan2i 11370 . . . . . . . . . . 11 (2 · ((𝑋 / π) / 2)) = (𝑋 / π)
269266, 268eqtr2i 2848 . . . . . . . . . 10 (𝑋 / π) = (2 · (𝑋 / 𝑇))
2702a1i 11 . . . . . . . . . . 11 ((𝑋 / 𝑇) ∈ ℤ → 2 ∈ ℤ)
271 id 22 . . . . . . . . . . 11 ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / 𝑇) ∈ ℤ)
272270, 271zmulcld 12081 . . . . . . . . . 10 ((𝑋 / 𝑇) ∈ ℤ → (2 · (𝑋 / 𝑇)) ∈ ℤ)
273269, 272eqeltrid 2920 . . . . . . . . 9 ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / π) ∈ ℤ)
27465, 273sylbi 220 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 → (𝑋 / π) ∈ ℤ)
275274, 7sylibr 237 . . . . . . 7 ((𝑋 mod 𝑇) = 0 → (𝑋 mod π) = 0)
276275iftrued 4456 . . . . . 6 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = 0)
277172, 276syl5req 2872 . . . . 5 ((𝑋 mod 𝑇) = 0 → 0 = 𝑌)
278253, 258, 2773eqtrrd 2864 . . . 4 ((𝑋 mod 𝑇) = 0 → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
279278adantl 485 . . 3 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
280128a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ*)
28159rexri 10686 . . . . . 6 𝑇 ∈ ℝ*
282281a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑇 ∈ ℝ*)
283139a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ)
284 pm4.56 986 . . . . . . . 8 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) ↔ ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
285284biimpi 219 . . . . . . 7 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
286 olc 865 . . . . . . . . 9 ((𝑋 mod 𝑇) = 0 → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
287286adantl 485 . . . . . . . 8 (((𝑋 mod 𝑇) ≤ π ∧ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
288127a1i 11 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 ∈ ℝ*)
289128a1i 11 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ*)
290140a1i 11 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ*)
291 0red 10631 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → 0 ∈ ℝ)
292139a1i 11 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ∈ ℝ)
293 modge0 13242 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → 0 ≤ (𝑋 mod 𝑇))
2944, 63, 293mp2an 691 . . . . . . . . . . . . 13 0 ≤ (𝑋 mod 𝑇)
295294a1i 11 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → 0 ≤ (𝑋 mod 𝑇))
296 neqne 3021 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≠ 0)
297291, 292, 295, 296leneltd 10781 . . . . . . . . . . 11 (¬ (𝑋 mod 𝑇) = 0 → 0 < (𝑋 mod 𝑇))
298297adantl 485 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 < (𝑋 mod 𝑇))
299 simpl 486 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π)
300288, 289, 290, 298, 299eliocd 42001 . . . . . . . . 9 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (0(,]π))
301300orcd 870 . . . . . . . 8 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
302287, 301pm2.61dan 812 . . . . . . 7 ((𝑋 mod 𝑇) ≤ π → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
303285, 302nsyl 142 . . . . . 6 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ (𝑋 mod 𝑇) ≤ π)
30433a1i 11 . . . . . . 7 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ)
305304, 283ltnled 10774 . . . . . 6 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π))
306303, 305mpbird 260 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π < (𝑋 mod 𝑇))
307 modlt 13243 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) < 𝑇)
3084, 63, 307mp2an 691 . . . . . 6 (𝑋 mod 𝑇) < 𝑇
309308a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) < 𝑇)
310280, 282, 283, 306, 309eliood 41992 . . . 4 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (π(,)𝑇))
311127a1i 11 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 0 ∈ ℝ*)
31233a1i 11 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π ∈ ℝ)
313140a1i 11 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ*)
314 ioogtlb 41989 . . . . . . . . . 10 ((π ∈ ℝ*𝑇 ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (π(,)𝑇)) → π < (𝑋 mod 𝑇))
315128, 281, 314mp3an12 1448 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π < (𝑋 mod 𝑇))
316311, 312, 313, 315gtnelioc 41985 . . . . . . . 8 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ∈ (0(,]π))
317316iffalsed 4459 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = -1)
318139a1i 11 . . . . . . . . . 10 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ)
319312, 318, 315ltnsymd 10776 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) < π)
320319iffalsed 4459 . . . . . . . 8 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) < π, 1, -1) = -1)
321156, 320syl5eq 2871 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝐹𝑋) = -1)
322317, 321oveq12d 7158 . . . . . 6 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (-1 + -1))
323322oveq1d 7155 . . . . 5 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = ((-1 + -1) / 2))
324 df-2 11688 . . . . . . . . . 10 2 = (1 + 1)
325324negeqi 10866 . . . . . . . . 9 -2 = -(1 + 1)
326185, 185negdii 10957 . . . . . . . . 9 -(1 + 1) = (-1 + -1)
327325, 326eqtr2i 2848 . . . . . . . 8 (-1 + -1) = -2
328327oveq1i 7150 . . . . . . 7 ((-1 + -1) / 2) = (-2 / 2)
329 divneg 11319 . . . . . . . 8 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(2 / 2) = (-2 / 2))
330169, 169, 44, 329mp3an 1458 . . . . . . 7 -(2 / 2) = (-2 / 2)
331238negeqi 10866 . . . . . . 7 -(2 / 2) = -1
332328, 330, 3313eqtr2i 2853 . . . . . 6 ((-1 + -1) / 2) = -1
333332a1i 11 . . . . 5 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((-1 + -1) / 2) = -1)
334172a1i 11 . . . . . 6 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋)))
335312, 318ltnled 10774 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π))
336315, 335mpbid 235 . . . . . . . 8 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ≤ π)
337248, 112eqbrtrdi 5088 . . . . . . . . . 10 ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≤ π)
338337adantl 485 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π)
339126orcanai 1000 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π)
340339, 144syl 17 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π)
341338, 340pm2.61dan 812 . . . . . . . 8 ((𝑋 mod π) = 0 → (𝑋 mod 𝑇) ≤ π)
342336, 341nsyl 142 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod π) = 0)
343342iffalsed 4459 . . . . . 6 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = (𝐹𝑋))
344334, 343, 3213eqtrrd 2864 . . . . 5 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -1 = 𝑌)
345323, 333, 3443eqtrrd 2864 . . . 4 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
346310, 345syl 17 . . 3 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
347279, 346pm2.61dan 812 . 2 (¬ (𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
348245, 347pm2.61i 185 1 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3013  wrex 3133  ifcif 4448   class class class wbr 5049  cmpt 5129  cfv 6338  (class class class)co 7140  cc 10522  cr 10523  0cc0 10524  1c1 10525   + caddc 10527   · cmul 10529  *cxr 10661   < clt 10662  cle 10663  cmin 10857  -cneg 10858   / cdiv 11284  2c2 11680  cz 11969  +crp 12377  (,)cioo 12726  (,]cioc 12727  cfl 13155   mod cmo 13232  πcpi 15411  cdvds 15598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-inf2 9090  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602  ax-addf 10603  ax-mulf 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-iin 4905  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-se 5498  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-isom 6347  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7674  df-2nd 7675  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-sin 15414  df-cos 15415  df-pi 15417  df-dvds 15599  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20525  df-xmet 20526  df-met 20527  df-bl 20528  df-mopn 20529  df-fbas 20530  df-fg 20531  df-cnfld 20534  df-top 21490  df-topon 21507  df-topsp 21529  df-bases 21542  df-cld 21615  df-ntr 21616  df-cls 21617  df-nei 21694  df-lp 21732  df-perf 21733  df-cn 21823  df-cnp 21824  df-haus 21911  df-tx 22158  df-hmeo 22351  df-fil 22442  df-fm 22534  df-flim 22535  df-flf 22536  df-xms 22918  df-ms 22919  df-tms 22920  df-cncf 23474  df-limc 24460  df-dv 24461
This theorem is referenced by:  fouriersw  42730
  Copyright terms: Public domain W3C validator