Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → 2
∥ (𝑋 /
π)) |
2 | | 2z 12352 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
3 | 2 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → 2 ∈
ℤ) |
4 | | fourierswlem.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 ∈ ℝ |
5 | | pirp 25618 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℝ+ |
6 | | mod0 13596 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ ∧ π
∈ ℝ+) → ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈ ℤ)) |
7 | 4, 5, 6 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈
ℤ) |
8 | 7 | biimpi 215 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod π) = 0 → (𝑋 / π) ∈
ℤ) |
9 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑋 / π) ∈
ℤ) |
10 | | divides 15965 |
. . . . . . . . . . 11
⊢ ((2
∈ ℤ ∧ (𝑋 /
π) ∈ ℤ) → (2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π))) |
11 | 3, 9, 10 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (2
∥ (𝑋 / π) ↔
∃𝑘 ∈ ℤ
(𝑘 · 2) = (𝑋 / π))) |
12 | 1, 11 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) →
∃𝑘 ∈ ℤ
(𝑘 · 2) = (𝑋 / π)) |
13 | | 2cnd 12051 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → 2 ∈
ℂ) |
14 | | picn 25616 |
. . . . . . . . . . . . . . . . . . . 20
⊢ π
∈ ℂ |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → π
∈ ℂ) |
16 | | zcn 12324 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
17 | 13, 15, 16 | mulassd 10998 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → ((2
· π) · 𝑘)
= (2 · (π · 𝑘))) |
18 | 15, 16 | mulcld 10995 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → (π
· 𝑘) ∈
ℂ) |
19 | 13, 18 | mulcomd 10996 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → (2
· (π · 𝑘))
= ((π · 𝑘)
· 2)) |
20 | 17, 19 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → ((2
· π) · 𝑘)
= ((π · 𝑘)
· 2)) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((2 ·
π) · 𝑘) = ((π
· 𝑘) ·
2)) |
22 | 15, 16, 13 | mulassd 10998 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → ((π
· 𝑘) · 2) =
(π · (𝑘 ·
2))) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((π ·
𝑘) · 2) = (π
· (𝑘 ·
2))) |
24 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 · 2) = (𝑋 / π) → (𝑘 · 2) = (𝑋 / π)) |
25 | 24 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 · 2) = (𝑋 / π) → (𝑋 / π) = (𝑘 · 2)) |
26 | 25 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / π) = (𝑘 · 2)) |
27 | 4 | recni 10989 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑋 ∈ ℂ |
28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 ∈
ℂ) |
29 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ∈
ℂ) |
30 | 16 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈
ℂ) |
31 | | 2cnd 12051 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 2 ∈
ℂ) |
32 | 30, 31 | mulcld 10995 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑘 · 2) ∈
ℂ) |
33 | | pire 25615 |
. . . . . . . . . . . . . . . . . . . 20
⊢ π
∈ ℝ |
34 | | pipos 25617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 <
π |
35 | 33, 34 | gt0ne0ii 11511 |
. . . . . . . . . . . . . . . . . . 19
⊢ π ≠
0 |
36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ≠
0) |
37 | 28, 29, 32, 36 | divmuld 11773 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((𝑋 / π) = (𝑘 · 2) ↔ (π · (𝑘 · 2)) = 𝑋)) |
38 | 26, 37 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (π ·
(𝑘 · 2)) = 𝑋) |
39 | 21, 23, 38 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 = ((2 · π) ·
𝑘)) |
40 | | fourierswlem.t |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = (2 ·
π) |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑇 = (2 ·
π)) |
42 | 39, 41 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = (((2 · π) · 𝑘) / (2 ·
π))) |
43 | 13, 15 | mulcld 10995 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (2
· π) ∈ ℂ) |
44 | | 2ne0 12077 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 |
45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → 2 ≠
0) |
46 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → π ≠
0) |
47 | 13, 15, 45, 46 | mulne0d 11627 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (2
· π) ≠ 0) |
48 | 16, 43, 47 | divcan3d 11756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (((2
· π) · 𝑘)
/ (2 · π)) = 𝑘) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (((2 ·
π) · 𝑘) / (2
· π)) = 𝑘) |
50 | 42, 49 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = 𝑘) |
51 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈
ℤ) |
52 | 50, 51 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ) |
53 | 52 | ex 413 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ)) |
54 | 53 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ))) |
55 | 54 | rexlimdv 3212 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) →
(∃𝑘 ∈ ℤ
(𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ)) |
56 | 12, 55 | mpd 15 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ) |
57 | | 2re 12047 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
58 | 57, 33 | remulcli 10991 |
. . . . . . . . . . 11
⊢ (2
· π) ∈ ℝ |
59 | 40, 58 | eqeltri 2835 |
. . . . . . . . . 10
⊢ 𝑇 ∈ ℝ |
60 | | 2pos 12076 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
61 | 57, 33, 60, 34 | mulgt0ii 11108 |
. . . . . . . . . . 11
⊢ 0 < (2
· π) |
62 | 61, 40 | breqtrri 5101 |
. . . . . . . . . 10
⊢ 0 <
𝑇 |
63 | 59, 62 | elrpii 12733 |
. . . . . . . . 9
⊢ 𝑇 ∈
ℝ+ |
64 | | mod0 13596 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ)) |
65 | 4, 63, 64 | mp2an 689 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ) |
66 | 56, 65 | sylibr 233 |
. . . . . . 7
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑋 mod 𝑇) = 0) |
67 | 66 | orcd 870 |
. . . . . 6
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π)) |
68 | | odd2np1 16050 |
. . . . . . . . . 10
⊢ ((𝑋 / π) ∈ ℤ →
(¬ 2 ∥ (𝑋 / π)
↔ ∃𝑘 ∈
ℤ ((2 · 𝑘) +
1) = (𝑋 /
π))) |
69 | 7, 68 | sylbi 216 |
. . . . . . . . 9
⊢ ((𝑋 mod π) = 0 → (¬ 2
∥ (𝑋 / π) ↔
∃𝑘 ∈ ℤ ((2
· 𝑘) + 1) = (𝑋 / π))) |
70 | 69 | biimpa 477 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
∃𝑘 ∈ ℤ ((2
· 𝑘) + 1) = (𝑋 / π)) |
71 | 13, 16 | mulcld 10995 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → (2
· 𝑘) ∈
ℂ) |
72 | 71 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (2 ·
𝑘) ∈
ℂ) |
73 | | 1cnd 10970 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 1 ∈
ℂ) |
74 | 14 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π ∈
ℂ) |
75 | 72, 73, 74 | adddird 11000 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (((2 ·
𝑘) + 1) · π) =
(((2 · 𝑘) ·
π) + (1 · π))) |
76 | 13, 16 | mulcomd 10996 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → (2
· 𝑘) = (𝑘 · 2)) |
77 | 76 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → ((2
· 𝑘) · π)
= ((𝑘 · 2) ·
π)) |
78 | 16, 13, 15 | mulassd 10998 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → ((𝑘 · 2) · π) =
(𝑘 · (2 ·
π))) |
79 | 40 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (2
· π) = 𝑇 |
80 | 79 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → (2
· π) = 𝑇) |
81 | 80 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → (𝑘 · (2 · π)) =
(𝑘 · 𝑇)) |
82 | 77, 78, 81 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → ((2
· 𝑘) · π)
= (𝑘 · 𝑇)) |
83 | 14 | mulid2i 10980 |
. . . . . . . . . . . . . . . . . 18
⊢ (1
· π) = π |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → (1
· π) = π) |
85 | 82, 84 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (((2
· 𝑘) · π)
+ (1 · π)) = ((𝑘
· 𝑇) +
π)) |
86 | 85 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (((2 ·
𝑘) · π) + (1
· π)) = ((𝑘
· 𝑇) +
π)) |
87 | 40, 43 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → 𝑇 ∈
ℂ) |
88 | 16, 87 | mulcld 10995 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → (𝑘 · 𝑇) ∈ ℂ) |
89 | 88, 15 | addcomd 11177 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇))) |
90 | 89 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇))) |
91 | 75, 86, 90 | 3eqtrrd 2783 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (π + (𝑘 · 𝑇)) = (((2 · 𝑘) + 1) · π)) |
92 | | peano2cn 11147 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
· 𝑘) ∈ ℂ
→ ((2 · 𝑘) + 1)
∈ ℂ) |
93 | 71, 92 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → ((2
· 𝑘) + 1) ∈
ℂ) |
94 | 93, 15 | mulcomd 10996 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (((2
· 𝑘) + 1) ·
π) = (π · ((2 · 𝑘) + 1))) |
95 | 94 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (((2 ·
𝑘) + 1) · π) =
(π · ((2 · 𝑘) + 1))) |
96 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (((2
· 𝑘) + 1) = (𝑋 / π) → ((2 ·
𝑘) + 1) = (𝑋 / π)) |
97 | 96 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (((2
· 𝑘) + 1) = (𝑋 / π) → (𝑋 / π) = ((2 · 𝑘) + 1)) |
98 | 97 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (𝑋 / π) = ((2 · 𝑘) + 1)) |
99 | 27 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 𝑋 ∈
ℂ) |
100 | 93 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((2 ·
𝑘) + 1) ∈
ℂ) |
101 | 35 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π ≠
0) |
102 | 99, 74, 100, 101 | divmuld 11773 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((𝑋 / π) = ((2 · 𝑘) + 1) ↔ (π · ((2
· 𝑘) + 1)) = 𝑋)) |
103 | 98, 102 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (π ·
((2 · 𝑘) + 1)) =
𝑋) |
104 | 91, 95, 103 | 3eqtrrd 2783 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 𝑋 = (π + (𝑘 · 𝑇))) |
105 | 104 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = ((π + (𝑘 · 𝑇)) mod 𝑇)) |
106 | | modcyc 13626 |
. . . . . . . . . . . . . 14
⊢ ((π
∈ ℝ ∧ 𝑇
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇)) |
107 | 33, 63, 106 | mp3an12 1450 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → ((π +
(𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇)) |
108 | 107 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇)) |
109 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π ∈
ℝ) |
110 | 63 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 𝑇 ∈
ℝ+) |
111 | | 0re 10977 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
112 | 111, 33, 34 | ltleii 11098 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
π |
113 | 112 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 0 ≤
π) |
114 | | 2timesgt 42827 |
. . . . . . . . . . . . . . . 16
⊢ (π
∈ ℝ+ → π < (2 · π)) |
115 | 5, 114 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ π <
(2 · π) |
116 | 115, 40 | breqtrri 5101 |
. . . . . . . . . . . . . 14
⊢ π <
𝑇 |
117 | 116 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π < 𝑇) |
118 | | modid 13616 |
. . . . . . . . . . . . 13
⊢ (((π
∈ ℝ ∧ 𝑇
∈ ℝ+) ∧ (0 ≤ π ∧ π < 𝑇)) → (π mod 𝑇) = π) |
119 | 109, 110,
113, 117, 118 | syl22anc 836 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (π mod 𝑇) = π) |
120 | 105, 108,
119 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = π) |
121 | 120 | ex 413 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → (((2
· 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π)) |
122 | 121 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
(𝑘 ∈ ℤ →
(((2 · 𝑘) + 1) =
(𝑋 / π) → (𝑋 mod 𝑇) = π))) |
123 | 122 | rexlimdv 3212 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
(∃𝑘 ∈ ℤ
((2 · 𝑘) + 1) =
(𝑋 / π) → (𝑋 mod 𝑇) = π)) |
124 | 70, 123 | mpd 15 |
. . . . . . 7
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
(𝑋 mod 𝑇) = π) |
125 | 124 | olcd 871 |
. . . . . 6
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π)) |
126 | 67, 125 | pm2.61dan 810 |
. . . . 5
⊢ ((𝑋 mod π) = 0 → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π)) |
127 | | 0xr 11022 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
128 | 33 | rexri 11033 |
. . . . . . . 8
⊢ π
∈ ℝ* |
129 | | iocgtlb 43040 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → 0 < (𝑋 mod 𝑇)) |
130 | 127, 128,
129 | mp3an12 1450 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → 0 < (𝑋 mod 𝑇)) |
131 | 130 | gt0ne0d 11539 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≠ 0) |
132 | 131 | neneqd 2948 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → ¬ (𝑋 mod 𝑇) = 0) |
133 | | pm2.53 848 |
. . . . . 6
⊢ (((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) → (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = π)) |
134 | 133 | imp 407 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π) |
135 | 126, 132,
134 | syl2anr 597 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) = π) |
136 | 127 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → 0 ∈
ℝ*) |
137 | 128 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → π ∈
ℝ*) |
138 | | modcl 13593 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ (𝑋 mod 𝑇) ∈
ℝ) |
139 | 4, 63, 138 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ (𝑋 mod 𝑇) ∈ ℝ |
140 | 139 | rexri 11033 |
. . . . . . . . . . . . 13
⊢ (𝑋 mod 𝑇) ∈
ℝ* |
141 | 140 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈
ℝ*) |
142 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) = π) |
143 | 34, 142 | breqtrrid 5112 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → 0 < (𝑋 mod 𝑇)) |
144 | 33 | eqlei2 11086 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ≤ π) |
145 | 136, 137,
141, 143, 144 | eliocd 43045 |
. . . . . . . . . . 11
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈ (0(,]π)) |
146 | 145 | iftrued 4467 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
147 | 146 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
148 | | oveq1 7282 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → (𝑥 mod 𝑇) = (𝑋 mod 𝑇)) |
149 | 148 | breq1d 5084 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → ((𝑥 mod 𝑇) < π ↔ (𝑋 mod 𝑇) < π)) |
150 | 149 | ifbid 4482 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → if((𝑥 mod 𝑇) < π, 1, -1) = if((𝑋 mod 𝑇) < π, 1, -1)) |
151 | | fourierswlem.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) |
152 | | 1ex 10971 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
V |
153 | | negex 11219 |
. . . . . . . . . . . . . 14
⊢ -1 ∈
V |
154 | 152, 153 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if((𝑋 mod 𝑇) < π, 1, -1) ∈
V |
155 | 150, 151,
154 | fvmpt 6875 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℝ → (𝐹‘𝑋) = if((𝑋 mod 𝑇) < π, 1, -1)) |
156 | 4, 155 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑋) = if((𝑋 mod 𝑇) < π, 1, -1) |
157 | 139 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ∈ ℝ) |
158 | | id 22 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) < π) |
159 | 157, 158 | ltned 11111 |
. . . . . . . . . . . . 13
⊢ ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ≠ π) |
160 | 159 | necon2bi 2974 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → ¬ (𝑋 mod 𝑇) < π) |
161 | 160 | iffalsed 4470 |
. . . . . . . . . . 11
⊢ ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) < π, 1, -1) = -1) |
162 | 156, 161 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = π → (𝐹‘𝑋) = -1) |
163 | 162 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (𝐹‘𝑋) = -1) |
164 | 147, 163 | oveq12d 7293 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = (1 + -1)) |
165 | | 1pneg1e0 12092 |
. . . . . . . 8
⊢ (1 + -1)
= 0 |
166 | 164, 165 | eqtrdi 2794 |
. . . . . . 7
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = 0) |
167 | 166 | oveq1d 7290 |
. . . . . 6
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = (0 / 2)) |
168 | 167 | adantll 711 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = (0 / 2)) |
169 | | 2cn 12048 |
. . . . . . 7
⊢ 2 ∈
ℂ |
170 | 169, 44 | div0i 11709 |
. . . . . 6
⊢ (0 / 2) =
0 |
171 | 170 | a1i 11 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → (0 / 2) =
0) |
172 | | fourierswlem.y |
. . . . . . 7
⊢ 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) |
173 | | iftrue 4465 |
. . . . . . 7
⊢ ((𝑋 mod π) = 0 → if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) = 0) |
174 | 172, 173 | eqtr2id 2791 |
. . . . . 6
⊢ ((𝑋 mod π) = 0 → 0 = 𝑌) |
175 | 174 | ad2antlr 724 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 0 = 𝑌) |
176 | 168, 171,
175 | 3eqtrrd 2783 |
. . . 4
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
177 | 135, 176 | mpdan 684 |
. . 3
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
178 | | iftrue 4465 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
179 | 178 | adantr 481 |
. . . . . 6
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
180 | 139 | a1i 11 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ∈ ℝ) |
181 | 33 | a1i 11 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π
∈ ℝ) |
182 | | iocleub 43041 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → (𝑋 mod 𝑇) ≤ π) |
183 | 127, 128,
182 | mp3an12 1450 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≤ π) |
184 | 183 | adantr 481 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ≤ π) |
185 | | ax-1cn 10929 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℂ |
186 | 185, 14 | mulcomi 10983 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1
· π) = (π · 1) |
187 | 83, 186 | eqtr3i 2768 |
. . . . . . . . . . . . . . . . . 18
⊢ π =
(π · 1) |
188 | 187 | oveq1i 7285 |
. . . . . . . . . . . . . . . . 17
⊢ (π +
(π · (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π ·
(2 · (⌊‘(𝑋 / 𝑇))))) |
189 | 169, 14 | mulcomi 10983 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2
· π) = (π · 2) |
190 | 40, 189 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑇 = (π ·
2) |
191 | 190 | oveq1i 7285 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 · (⌊‘(𝑋 / 𝑇))) = ((π · 2) ·
(⌊‘(𝑋 / 𝑇))) |
192 | 111, 62 | gtneii 11087 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑇 ≠ 0 |
193 | 4, 59, 192 | redivcli 11742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 / 𝑇) ∈ ℝ |
194 | | flcl 13515 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 / 𝑇) ∈ ℝ →
(⌊‘(𝑋 / 𝑇)) ∈
ℤ) |
195 | 193, 194 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(⌊‘(𝑋 /
𝑇)) ∈
ℤ |
196 | | zcn 12324 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⌊‘(𝑋 /
𝑇)) ∈ ℤ →
(⌊‘(𝑋 / 𝑇)) ∈
ℂ) |
197 | 195, 196 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(⌊‘(𝑋 /
𝑇)) ∈
ℂ |
198 | 14, 169, 197 | mulassi 10986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((π
· 2) · (⌊‘(𝑋 / 𝑇))) = (π · (2 ·
(⌊‘(𝑋 / 𝑇)))) |
199 | 191, 198 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 · (⌊‘(𝑋 / 𝑇))) = (π · (2 ·
(⌊‘(𝑋 / 𝑇)))) |
200 | 199 | oveq2i 7286 |
. . . . . . . . . . . . . . . . 17
⊢ (π +
(𝑇 ·
(⌊‘(𝑋 / 𝑇)))) = (π + (π · (2
· (⌊‘(𝑋
/ 𝑇))))) |
201 | 169, 197 | mulcli 10982 |
. . . . . . . . . . . . . . . . . 18
⊢ (2
· (⌊‘(𝑋
/ 𝑇))) ∈
ℂ |
202 | 14, 185, 201 | adddii 10987 |
. . . . . . . . . . . . . . . . 17
⊢ (π
· (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π ·
(2 · (⌊‘(𝑋 / 𝑇))))) |
203 | 188, 200,
202 | 3eqtr4ri 2777 |
. . . . . . . . . . . . . . . 16
⊢ (π
· (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) |
204 | 203 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (π =
(𝑋 mod 𝑇) → (π · (1 + (2 ·
(⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
205 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (π =
(𝑋 mod 𝑇) → π = (𝑋 mod 𝑇)) |
206 | | modval 13591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
207 | 4, 63, 206 | mp2an 689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) |
208 | 205, 207 | eqtrdi 2794 |
. . . . . . . . . . . . . . . 16
⊢ (π =
(𝑋 mod 𝑇) → π = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
209 | 208 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (π =
(𝑋 mod 𝑇) → (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
210 | 27 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (π =
(𝑋 mod 𝑇) → 𝑋 ∈ ℂ) |
211 | 59 | recni 10989 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑇 ∈ ℂ |
212 | 211, 197 | mulcli 10982 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ |
213 | 212 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (π =
(𝑋 mod 𝑇) → (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ) |
214 | 210, 213 | npcand 11336 |
. . . . . . . . . . . . . . 15
⊢ (π =
(𝑋 mod 𝑇) → ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = 𝑋) |
215 | 204, 209,
214 | 3eqtrrd 2783 |
. . . . . . . . . . . . . 14
⊢ (π =
(𝑋 mod 𝑇) → 𝑋 = (π · (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))))) |
216 | 215 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 / π) = ((π · (1 + (2 ·
(⌊‘(𝑋 / 𝑇))))) / π)) |
217 | 185, 201 | addcli 10981 |
. . . . . . . . . . . . . 14
⊢ (1 + (2
· (⌊‘(𝑋
/ 𝑇)))) ∈
ℂ |
218 | 217, 14, 35 | divcan3i 11721 |
. . . . . . . . . . . . 13
⊢ ((π
· (1 + (2 · (⌊‘(𝑋 / 𝑇))))) / π) = (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))) |
219 | 216, 218 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 / π) = (1 + (2 ·
(⌊‘(𝑋 / 𝑇))))) |
220 | | 1z 12350 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℤ |
221 | | zmulcl 12369 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℤ ∧ (⌊‘(𝑋 / 𝑇)) ∈ ℤ) → (2 ·
(⌊‘(𝑋 / 𝑇))) ∈
ℤ) |
222 | 2, 195, 221 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ (2
· (⌊‘(𝑋
/ 𝑇))) ∈
ℤ |
223 | | zaddcl 12360 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℤ ∧ (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ) → (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))) ∈
ℤ) |
224 | 220, 222,
223 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ (1 + (2
· (⌊‘(𝑋
/ 𝑇)))) ∈
ℤ |
225 | 224 | a1i 11 |
. . . . . . . . . . . 12
⊢ (π =
(𝑋 mod 𝑇) → (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))) ∈
ℤ) |
226 | 219, 225 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 / π) ∈ ℤ) |
227 | 226, 7 | sylibr 233 |
. . . . . . . . . 10
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 mod π) = 0) |
228 | 227 | necon3bi 2970 |
. . . . . . . . 9
⊢ (¬
(𝑋 mod π) = 0 →
π ≠ (𝑋 mod 𝑇)) |
229 | 228 | adantl 482 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π ≠
(𝑋 mod 𝑇)) |
230 | 180, 181,
184, 229 | leneltd 11129 |
. . . . . . 7
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) < π) |
231 | | iftrue 4465 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) < π → if((𝑋 mod 𝑇) < π, 1, -1) = 1) |
232 | 156, 231 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) < π → (𝐹‘𝑋) = 1) |
233 | 230, 232 | syl 17 |
. . . . . 6
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹‘𝑋) = 1) |
234 | 179, 233 | oveq12d 7293 |
. . . . 5
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) →
(if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) +
(𝐹‘𝑋)) = (1 + 1)) |
235 | 234 | oveq1d 7290 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) →
((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) +
(𝐹‘𝑋)) / 2) = ((1 + 1) / 2)) |
236 | | 1p1e2 12098 |
. . . . . . 7
⊢ (1 + 1) =
2 |
237 | 236 | oveq1i 7285 |
. . . . . 6
⊢ ((1 + 1)
/ 2) = (2 / 2) |
238 | | 2div2e1 12114 |
. . . . . 6
⊢ (2 / 2) =
1 |
239 | 237, 238 | eqtr2i 2767 |
. . . . 5
⊢ 1 = ((1 +
1) / 2) |
240 | 233, 239 | eqtr2di 2795 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → ((1 + 1)
/ 2) = (𝐹‘𝑋)) |
241 | | iffalse 4468 |
. . . . . 6
⊢ (¬
(𝑋 mod π) = 0 →
if((𝑋 mod π) = 0, 0,
(𝐹‘𝑋)) = (𝐹‘𝑋)) |
242 | 172, 241 | eqtr2id 2791 |
. . . . 5
⊢ (¬
(𝑋 mod π) = 0 →
(𝐹‘𝑋) = 𝑌) |
243 | 242 | adantl 482 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹‘𝑋) = 𝑌) |
244 | 235, 240,
243 | 3eqtrrd 2783 |
. . 3
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
245 | 177, 244 | pm2.61dan 810 |
. 2
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
246 | 131 | necon2bi 2974 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 → ¬ (𝑋 mod 𝑇) ∈ (0(,]π)) |
247 | 246 | iffalsed 4470 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
-1) |
248 | | id 22 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = 0) |
249 | 248, 34 | eqbrtrdi 5113 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) < π) |
250 | 249 | iftrued 4467 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) < π, 1, -1) = 1) |
251 | 156, 250 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) = 0 → (𝐹‘𝑋) = 1) |
252 | 247, 251 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) = 0 → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = (-1 + 1)) |
253 | 252 | oveq1d 7290 |
. . . . 5
⊢ ((𝑋 mod 𝑇) = 0 → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = ((-1 + 1) / 2)) |
254 | | neg1cn 12087 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
255 | 185, 254,
165 | addcomli 11167 |
. . . . . . . 8
⊢ (-1 + 1)
= 0 |
256 | 255 | oveq1i 7285 |
. . . . . . 7
⊢ ((-1 + 1)
/ 2) = (0 / 2) |
257 | 256, 170 | eqtri 2766 |
. . . . . 6
⊢ ((-1 + 1)
/ 2) = 0 |
258 | 257 | a1i 11 |
. . . . 5
⊢ ((𝑋 mod 𝑇) = 0 → ((-1 + 1) / 2) =
0) |
259 | 40 | oveq2i 7286 |
. . . . . . . . . . . . 13
⊢ (𝑋 / 𝑇) = (𝑋 / (2 · π)) |
260 | | 2cnne0 12183 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
261 | 14, 35 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ (π
∈ ℂ ∧ π ≠ 0) |
262 | | divdiv1 11686 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) →
((𝑋 / 2) / π) = (𝑋 / (2 ·
π))) |
263 | 27, 260, 261, 262 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ ((𝑋 / 2) / π) = (𝑋 / (2 ·
π)) |
264 | 27, 169, 14, 44, 35 | divdiv32i 11730 |
. . . . . . . . . . . . 13
⊢ ((𝑋 / 2) / π) = ((𝑋 / π) / 2) |
265 | 259, 263,
264 | 3eqtr2i 2772 |
. . . . . . . . . . . 12
⊢ (𝑋 / 𝑇) = ((𝑋 / π) / 2) |
266 | 265 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (2
· (𝑋 / 𝑇)) = (2 · ((𝑋 / π) / 2)) |
267 | 27, 14, 35 | divcli 11717 |
. . . . . . . . . . . 12
⊢ (𝑋 / π) ∈
ℂ |
268 | 267, 169,
44 | divcan2i 11718 |
. . . . . . . . . . 11
⊢ (2
· ((𝑋 / π) / 2))
= (𝑋 /
π) |
269 | 266, 268 | eqtr2i 2767 |
. . . . . . . . . 10
⊢ (𝑋 / π) = (2 · (𝑋 / 𝑇)) |
270 | 2 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑋 / 𝑇) ∈ ℤ → 2 ∈
ℤ) |
271 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / 𝑇) ∈ ℤ) |
272 | 270, 271 | zmulcld 12432 |
. . . . . . . . . 10
⊢ ((𝑋 / 𝑇) ∈ ℤ → (2 · (𝑋 / 𝑇)) ∈ ℤ) |
273 | 269, 272 | eqeltrid 2843 |
. . . . . . . . 9
⊢ ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / π) ∈ ℤ) |
274 | 65, 273 | sylbi 216 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 / π) ∈ ℤ) |
275 | 274, 7 | sylibr 233 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod π) = 0) |
276 | 275 | iftrued 4467 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) = 0 → if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) = 0) |
277 | 172, 276 | eqtr2id 2791 |
. . . . 5
⊢ ((𝑋 mod 𝑇) = 0 → 0 = 𝑌) |
278 | 253, 258,
277 | 3eqtrrd 2783 |
. . . 4
⊢ ((𝑋 mod 𝑇) = 0 → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
279 | 278 | adantl 482 |
. . 3
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
280 | 128 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈
ℝ*) |
281 | 59 | rexri 11033 |
. . . . . 6
⊢ 𝑇 ∈
ℝ* |
282 | 281 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑇 ∈
ℝ*) |
283 | 139 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ) |
284 | | pm4.56 986 |
. . . . . . . 8
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) ↔ ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
285 | 284 | biimpi 215 |
. . . . . . 7
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
286 | | olc 865 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) = 0 → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
287 | 286 | adantl 482 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ≤ π ∧ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
288 | 127 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 ∈
ℝ*) |
289 | 128 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈
ℝ*) |
290 | 140 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈
ℝ*) |
291 | | 0red 10978 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → 0 ∈
ℝ) |
292 | 139 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ∈ ℝ) |
293 | | modge0 13599 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ 0 ≤ (𝑋 mod 𝑇)) |
294 | 4, 63, 293 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ 0 ≤
(𝑋 mod 𝑇) |
295 | 294 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → 0 ≤ (𝑋 mod 𝑇)) |
296 | | neqne 2951 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≠ 0) |
297 | 291, 292,
295, 296 | leneltd 11129 |
. . . . . . . . . . 11
⊢ (¬
(𝑋 mod 𝑇) = 0 → 0 < (𝑋 mod 𝑇)) |
298 | 297 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 < (𝑋 mod 𝑇)) |
299 | | simpl 483 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π) |
300 | 288, 289,
290, 298, 299 | eliocd 43045 |
. . . . . . . . 9
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (0(,]π)) |
301 | 300 | orcd 870 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
302 | 287, 301 | pm2.61dan 810 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ≤ π → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
303 | 285, 302 | nsyl 140 |
. . . . . 6
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ (𝑋 mod 𝑇) ≤ π) |
304 | 33 | a1i 11 |
. . . . . . 7
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈
ℝ) |
305 | 304, 283 | ltnled 11122 |
. . . . . 6
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π)) |
306 | 303, 305 | mpbird 256 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π < (𝑋 mod 𝑇)) |
307 | | modlt 13600 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ (𝑋 mod 𝑇) < 𝑇) |
308 | 4, 63, 307 | mp2an 689 |
. . . . . 6
⊢ (𝑋 mod 𝑇) < 𝑇 |
309 | 308 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) < 𝑇) |
310 | 280, 282,
283, 306, 309 | eliood 43036 |
. . . 4
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (π(,)𝑇)) |
311 | 127 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 0 ∈
ℝ*) |
312 | 33 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π ∈
ℝ) |
313 | 140 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈
ℝ*) |
314 | | ioogtlb 43033 |
. . . . . . . . . 10
⊢ ((π
∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (π(,)𝑇)) → π < (𝑋 mod 𝑇)) |
315 | 128, 281,
314 | mp3an12 1450 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π < (𝑋 mod 𝑇)) |
316 | 311, 312,
313, 315 | gtnelioc 43029 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ∈ (0(,]π)) |
317 | 316 | iffalsed 4470 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
-1) |
318 | 139 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ) |
319 | 312, 318,
315 | ltnsymd 11124 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) < π) |
320 | 319 | iffalsed 4470 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) < π, 1, -1) = -1) |
321 | 156, 320 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝐹‘𝑋) = -1) |
322 | 317, 321 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = (-1 + -1)) |
323 | 322 | oveq1d 7290 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = ((-1 + -1) / 2)) |
324 | | df-2 12036 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
325 | 324 | negeqi 11214 |
. . . . . . . . 9
⊢ -2 = -(1
+ 1) |
326 | 185, 185 | negdii 11305 |
. . . . . . . . 9
⊢ -(1 + 1)
= (-1 + -1) |
327 | 325, 326 | eqtr2i 2767 |
. . . . . . . 8
⊢ (-1 + -1)
= -2 |
328 | 327 | oveq1i 7285 |
. . . . . . 7
⊢ ((-1 +
-1) / 2) = (-2 / 2) |
329 | | divneg 11667 |
. . . . . . . 8
⊢ ((2
∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(2 / 2) = (-2 /
2)) |
330 | 169, 169,
44, 329 | mp3an 1460 |
. . . . . . 7
⊢ -(2 / 2)
= (-2 / 2) |
331 | 238 | negeqi 11214 |
. . . . . . 7
⊢ -(2 / 2)
= -1 |
332 | 328, 330,
331 | 3eqtr2i 2772 |
. . . . . 6
⊢ ((-1 +
-1) / 2) = -1 |
333 | 332 | a1i 11 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((-1 + -1) / 2) =
-1) |
334 | 172 | a1i 11 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋))) |
335 | 312, 318 | ltnled 11122 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π)) |
336 | 315, 335 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ≤ π) |
337 | 248, 112 | eqbrtrdi 5113 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≤ π) |
338 | 337 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π) |
339 | 126 | orcanai 1000 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ ¬
(𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π) |
340 | 339, 144 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ ¬
(𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π) |
341 | 338, 340 | pm2.61dan 810 |
. . . . . . . 8
⊢ ((𝑋 mod π) = 0 → (𝑋 mod 𝑇) ≤ π) |
342 | 336, 341 | nsyl 140 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod π) = 0) |
343 | 342 | iffalsed 4470 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) = (𝐹‘𝑋)) |
344 | 334, 343,
321 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -1 = 𝑌) |
345 | 323, 333,
344 | 3eqtrrd 2783 |
. . . 4
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
346 | 310, 345 | syl 17 |
. . 3
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
347 | 279, 346 | pm2.61dan 810 |
. 2
⊢ (¬
(𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
348 | 245, 347 | pm2.61i 182 |
1
⊢ 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) |