| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → 2
∥ (𝑋 /
π)) |
| 2 | | 2z 12629 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
| 3 | 2 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → 2 ∈
ℤ) |
| 4 | | fourierswlem.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 ∈ ℝ |
| 5 | | pirp 26427 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℝ+ |
| 6 | | mod0 13898 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ ∧ π
∈ ℝ+) → ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈ ℤ)) |
| 7 | 4, 5, 6 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈
ℤ) |
| 8 | 7 | biimpi 216 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod π) = 0 → (𝑋 / π) ∈
ℤ) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑋 / π) ∈
ℤ) |
| 10 | | divides 16279 |
. . . . . . . . . . 11
⊢ ((2
∈ ℤ ∧ (𝑋 /
π) ∈ ℤ) → (2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π))) |
| 11 | 3, 9, 10 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (2
∥ (𝑋 / π) ↔
∃𝑘 ∈ ℤ
(𝑘 · 2) = (𝑋 / π))) |
| 12 | 1, 11 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) →
∃𝑘 ∈ ℤ
(𝑘 · 2) = (𝑋 / π)) |
| 13 | | 2cnd 12323 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → 2 ∈
ℂ) |
| 14 | | picn 26424 |
. . . . . . . . . . . . . . . . . . . 20
⊢ π
∈ ℂ |
| 15 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → π
∈ ℂ) |
| 16 | | zcn 12598 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
| 17 | 13, 15, 16 | mulassd 11263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → ((2
· π) · 𝑘)
= (2 · (π · 𝑘))) |
| 18 | 15, 16 | mulcld 11260 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → (π
· 𝑘) ∈
ℂ) |
| 19 | 13, 18 | mulcomd 11261 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → (2
· (π · 𝑘))
= ((π · 𝑘)
· 2)) |
| 20 | 17, 19 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → ((2
· π) · 𝑘)
= ((π · 𝑘)
· 2)) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((2 ·
π) · 𝑘) = ((π
· 𝑘) ·
2)) |
| 22 | 15, 16, 13 | mulassd 11263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → ((π
· 𝑘) · 2) =
(π · (𝑘 ·
2))) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((π ·
𝑘) · 2) = (π
· (𝑘 ·
2))) |
| 24 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 · 2) = (𝑋 / π) → (𝑘 · 2) = (𝑋 / π)) |
| 25 | 24 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 · 2) = (𝑋 / π) → (𝑋 / π) = (𝑘 · 2)) |
| 26 | 25 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / π) = (𝑘 · 2)) |
| 27 | 4 | recni 11254 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑋 ∈ ℂ |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 ∈
ℂ) |
| 29 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ∈
ℂ) |
| 30 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈
ℂ) |
| 31 | | 2cnd 12323 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 2 ∈
ℂ) |
| 32 | 30, 31 | mulcld 11260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑘 · 2) ∈
ℂ) |
| 33 | | pire 26423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ π
∈ ℝ |
| 34 | | pipos 26425 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 <
π |
| 35 | 33, 34 | gt0ne0ii 11778 |
. . . . . . . . . . . . . . . . . . 19
⊢ π ≠
0 |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ≠
0) |
| 37 | 28, 29, 32, 36 | divmuld 12044 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((𝑋 / π) = (𝑘 · 2) ↔ (π · (𝑘 · 2)) = 𝑋)) |
| 38 | 26, 37 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (π ·
(𝑘 · 2)) = 𝑋) |
| 39 | 21, 23, 38 | 3eqtrrd 2776 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 = ((2 · π) ·
𝑘)) |
| 40 | | fourierswlem.t |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = (2 ·
π) |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑇 = (2 ·
π)) |
| 42 | 39, 41 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = (((2 · π) · 𝑘) / (2 ·
π))) |
| 43 | 13, 15 | mulcld 11260 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (2
· π) ∈ ℂ) |
| 44 | | 2ne0 12349 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → 2 ≠
0) |
| 46 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → π ≠
0) |
| 47 | 13, 15, 45, 46 | mulne0d 11894 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (2
· π) ≠ 0) |
| 48 | 16, 43, 47 | divcan3d 12027 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (((2
· π) · 𝑘)
/ (2 · π)) = 𝑘) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (((2 ·
π) · 𝑘) / (2
· π)) = 𝑘) |
| 50 | 42, 49 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = 𝑘) |
| 51 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈
ℤ) |
| 52 | 50, 51 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ) |
| 53 | 52 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ)) |
| 54 | 53 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ))) |
| 55 | 54 | rexlimdv 3140 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) →
(∃𝑘 ∈ ℤ
(𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ)) |
| 56 | 12, 55 | mpd 15 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ) |
| 57 | | 2re 12319 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
| 58 | 57, 33 | remulcli 11256 |
. . . . . . . . . . 11
⊢ (2
· π) ∈ ℝ |
| 59 | 40, 58 | eqeltri 2831 |
. . . . . . . . . 10
⊢ 𝑇 ∈ ℝ |
| 60 | | 2pos 12348 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
| 61 | 57, 33, 60, 34 | mulgt0ii 11373 |
. . . . . . . . . . 11
⊢ 0 < (2
· π) |
| 62 | 61, 40 | breqtrri 5151 |
. . . . . . . . . 10
⊢ 0 <
𝑇 |
| 63 | 59, 62 | elrpii 13016 |
. . . . . . . . 9
⊢ 𝑇 ∈
ℝ+ |
| 64 | | mod0 13898 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ)) |
| 65 | 4, 63, 64 | mp2an 692 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ) |
| 66 | 56, 65 | sylibr 234 |
. . . . . . 7
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → (𝑋 mod 𝑇) = 0) |
| 67 | 66 | orcd 873 |
. . . . . 6
⊢ (((𝑋 mod π) = 0 ∧ 2 ∥
(𝑋 / π)) → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π)) |
| 68 | | odd2np1 16365 |
. . . . . . . . . 10
⊢ ((𝑋 / π) ∈ ℤ →
(¬ 2 ∥ (𝑋 / π)
↔ ∃𝑘 ∈
ℤ ((2 · 𝑘) +
1) = (𝑋 /
π))) |
| 69 | 7, 68 | sylbi 217 |
. . . . . . . . 9
⊢ ((𝑋 mod π) = 0 → (¬ 2
∥ (𝑋 / π) ↔
∃𝑘 ∈ ℤ ((2
· 𝑘) + 1) = (𝑋 / π))) |
| 70 | 69 | biimpa 476 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
∃𝑘 ∈ ℤ ((2
· 𝑘) + 1) = (𝑋 / π)) |
| 71 | 13, 16 | mulcld 11260 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → (2
· 𝑘) ∈
ℂ) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (2 ·
𝑘) ∈
ℂ) |
| 73 | | 1cnd 11235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 1 ∈
ℂ) |
| 74 | 14 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π ∈
ℂ) |
| 75 | 72, 73, 74 | adddird 11265 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (((2 ·
𝑘) + 1) · π) =
(((2 · 𝑘) ·
π) + (1 · π))) |
| 76 | 13, 16 | mulcomd 11261 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → (2
· 𝑘) = (𝑘 · 2)) |
| 77 | 76 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → ((2
· 𝑘) · π)
= ((𝑘 · 2) ·
π)) |
| 78 | 16, 13, 15 | mulassd 11263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → ((𝑘 · 2) · π) =
(𝑘 · (2 ·
π))) |
| 79 | 40 | eqcomi 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (2
· π) = 𝑇 |
| 80 | 79 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℤ → (2
· π) = 𝑇) |
| 81 | 80 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → (𝑘 · (2 · π)) =
(𝑘 · 𝑇)) |
| 82 | 77, 78, 81 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → ((2
· 𝑘) · π)
= (𝑘 · 𝑇)) |
| 83 | 14 | mullidi 11245 |
. . . . . . . . . . . . . . . . . 18
⊢ (1
· π) = π |
| 84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → (1
· π) = π) |
| 85 | 82, 84 | oveq12d 7428 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (((2
· 𝑘) · π)
+ (1 · π)) = ((𝑘
· 𝑇) +
π)) |
| 86 | 85 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (((2 ·
𝑘) · π) + (1
· π)) = ((𝑘
· 𝑇) +
π)) |
| 87 | 40, 43 | eqeltrid 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → 𝑇 ∈
ℂ) |
| 88 | 16, 87 | mulcld 11260 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → (𝑘 · 𝑇) ∈ ℂ) |
| 89 | 88, 15 | addcomd 11442 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇))) |
| 90 | 89 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇))) |
| 91 | 75, 86, 90 | 3eqtrrd 2776 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (π + (𝑘 · 𝑇)) = (((2 · 𝑘) + 1) · π)) |
| 92 | | peano2cn 11412 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
· 𝑘) ∈ ℂ
→ ((2 · 𝑘) + 1)
∈ ℂ) |
| 93 | 71, 92 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → ((2
· 𝑘) + 1) ∈
ℂ) |
| 94 | 93, 15 | mulcomd 11261 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (((2
· 𝑘) + 1) ·
π) = (π · ((2 · 𝑘) + 1))) |
| 95 | 94 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (((2 ·
𝑘) + 1) · π) =
(π · ((2 · 𝑘) + 1))) |
| 96 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (((2
· 𝑘) + 1) = (𝑋 / π) → ((2 ·
𝑘) + 1) = (𝑋 / π)) |
| 97 | 96 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ (((2
· 𝑘) + 1) = (𝑋 / π) → (𝑋 / π) = ((2 · 𝑘) + 1)) |
| 98 | 97 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (𝑋 / π) = ((2 · 𝑘) + 1)) |
| 99 | 27 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 𝑋 ∈
ℂ) |
| 100 | 93 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((2 ·
𝑘) + 1) ∈
ℂ) |
| 101 | 35 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π ≠
0) |
| 102 | 99, 74, 100, 101 | divmuld 12044 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((𝑋 / π) = ((2 · 𝑘) + 1) ↔ (π · ((2
· 𝑘) + 1)) = 𝑋)) |
| 103 | 98, 102 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (π ·
((2 · 𝑘) + 1)) =
𝑋) |
| 104 | 91, 95, 103 | 3eqtrrd 2776 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 𝑋 = (π + (𝑘 · 𝑇))) |
| 105 | 104 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = ((π + (𝑘 · 𝑇)) mod 𝑇)) |
| 106 | | modcyc 13928 |
. . . . . . . . . . . . . 14
⊢ ((π
∈ ℝ ∧ 𝑇
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇)) |
| 107 | 33, 63, 106 | mp3an12 1453 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → ((π +
(𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇)) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇)) |
| 109 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π ∈
ℝ) |
| 110 | 63 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 𝑇 ∈
ℝ+) |
| 111 | | 0re 11242 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 112 | 111, 33, 34 | ltleii 11363 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
π |
| 113 | 112 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → 0 ≤
π) |
| 114 | | 2timesgt 45284 |
. . . . . . . . . . . . . . . 16
⊢ (π
∈ ℝ+ → π < (2 · π)) |
| 115 | 5, 114 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ π <
(2 · π) |
| 116 | 115, 40 | breqtrri 5151 |
. . . . . . . . . . . . . 14
⊢ π <
𝑇 |
| 117 | 116 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → π < 𝑇) |
| 118 | | modid 13918 |
. . . . . . . . . . . . 13
⊢ (((π
∈ ℝ ∧ 𝑇
∈ ℝ+) ∧ (0 ≤ π ∧ π < 𝑇)) → (π mod 𝑇) = π) |
| 119 | 109, 110,
113, 117, 118 | syl22anc 838 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (π mod 𝑇) = π) |
| 120 | 105, 108,
119 | 3eqtrd 2775 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = π) |
| 121 | 120 | ex 412 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → (((2
· 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π)) |
| 122 | 121 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
(𝑘 ∈ ℤ →
(((2 · 𝑘) + 1) =
(𝑋 / π) → (𝑋 mod 𝑇) = π))) |
| 123 | 122 | rexlimdv 3140 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
(∃𝑘 ∈ ℤ
((2 · 𝑘) + 1) =
(𝑋 / π) → (𝑋 mod 𝑇) = π)) |
| 124 | 70, 123 | mpd 15 |
. . . . . . 7
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
(𝑋 mod 𝑇) = π) |
| 125 | 124 | olcd 874 |
. . . . . 6
⊢ (((𝑋 mod π) = 0 ∧ ¬ 2
∥ (𝑋 / π)) →
((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π)) |
| 126 | 67, 125 | pm2.61dan 812 |
. . . . 5
⊢ ((𝑋 mod π) = 0 → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π)) |
| 127 | | 0xr 11287 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 128 | 33 | rexri 11298 |
. . . . . . . 8
⊢ π
∈ ℝ* |
| 129 | | iocgtlb 45498 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → 0 < (𝑋 mod 𝑇)) |
| 130 | 127, 128,
129 | mp3an12 1453 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → 0 < (𝑋 mod 𝑇)) |
| 131 | 130 | gt0ne0d 11806 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≠ 0) |
| 132 | 131 | neneqd 2938 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → ¬ (𝑋 mod 𝑇) = 0) |
| 133 | | pm2.53 851 |
. . . . . 6
⊢ (((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) → (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = π)) |
| 134 | 133 | imp 406 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π) |
| 135 | 126, 132,
134 | syl2anr 597 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) = π) |
| 136 | 127 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → 0 ∈
ℝ*) |
| 137 | 128 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → π ∈
ℝ*) |
| 138 | | modcl 13895 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ (𝑋 mod 𝑇) ∈
ℝ) |
| 139 | 4, 63, 138 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ (𝑋 mod 𝑇) ∈ ℝ |
| 140 | 139 | rexri 11298 |
. . . . . . . . . . . . 13
⊢ (𝑋 mod 𝑇) ∈
ℝ* |
| 141 | 140 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈
ℝ*) |
| 142 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) = π) |
| 143 | 34, 142 | breqtrrid 5162 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → 0 < (𝑋 mod 𝑇)) |
| 144 | 33 | eqlei2 11351 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ≤ π) |
| 145 | 136, 137,
141, 143, 144 | eliocd 45503 |
. . . . . . . . . . 11
⊢ ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈ (0(,]π)) |
| 146 | 145 | iftrued 4513 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
| 147 | 146 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
| 148 | | oveq1 7417 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → (𝑥 mod 𝑇) = (𝑋 mod 𝑇)) |
| 149 | 148 | breq1d 5134 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → ((𝑥 mod 𝑇) < π ↔ (𝑋 mod 𝑇) < π)) |
| 150 | 149 | ifbid 4529 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → if((𝑥 mod 𝑇) < π, 1, -1) = if((𝑋 mod 𝑇) < π, 1, -1)) |
| 151 | | fourierswlem.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) |
| 152 | | 1ex 11236 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
V |
| 153 | | negex 11485 |
. . . . . . . . . . . . . 14
⊢ -1 ∈
V |
| 154 | 152, 153 | ifex 4556 |
. . . . . . . . . . . . 13
⊢ if((𝑋 mod 𝑇) < π, 1, -1) ∈
V |
| 155 | 150, 151,
154 | fvmpt 6991 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℝ → (𝐹‘𝑋) = if((𝑋 mod 𝑇) < π, 1, -1)) |
| 156 | 4, 155 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑋) = if((𝑋 mod 𝑇) < π, 1, -1) |
| 157 | 139 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ∈ ℝ) |
| 158 | | id 22 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) < π) |
| 159 | 157, 158 | ltned 11376 |
. . . . . . . . . . . . 13
⊢ ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ≠ π) |
| 160 | 159 | necon2bi 2963 |
. . . . . . . . . . . 12
⊢ ((𝑋 mod 𝑇) = π → ¬ (𝑋 mod 𝑇) < π) |
| 161 | 160 | iffalsed 4516 |
. . . . . . . . . . 11
⊢ ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) < π, 1, -1) = -1) |
| 162 | 156, 161 | eqtrid 2783 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = π → (𝐹‘𝑋) = -1) |
| 163 | 162 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (𝐹‘𝑋) = -1) |
| 164 | 147, 163 | oveq12d 7428 |
. . . . . . . 8
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = (1 + -1)) |
| 165 | | 1pneg1e0 12364 |
. . . . . . . 8
⊢ (1 + -1)
= 0 |
| 166 | 164, 165 | eqtrdi 2787 |
. . . . . . 7
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = 0) |
| 167 | 166 | oveq1d 7425 |
. . . . . 6
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = (0 / 2)) |
| 168 | 167 | adantll 714 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = (0 / 2)) |
| 169 | | 2cn 12320 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 170 | 169, 44 | div0i 11980 |
. . . . . 6
⊢ (0 / 2) =
0 |
| 171 | 170 | a1i 11 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → (0 / 2) =
0) |
| 172 | | fourierswlem.y |
. . . . . . 7
⊢ 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) |
| 173 | | iftrue 4511 |
. . . . . . 7
⊢ ((𝑋 mod π) = 0 → if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) = 0) |
| 174 | 172, 173 | eqtr2id 2784 |
. . . . . 6
⊢ ((𝑋 mod π) = 0 → 0 = 𝑌) |
| 175 | 174 | ad2antlr 727 |
. . . . 5
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 0 = 𝑌) |
| 176 | 168, 171,
175 | 3eqtrrd 2776 |
. . . 4
⊢ ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 177 | 135, 176 | mpdan 687 |
. . 3
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 178 | | iftrue 4511 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
| 179 | 178 | adantr 480 |
. . . . . 6
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
1) |
| 180 | 139 | a1i 11 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ∈ ℝ) |
| 181 | 33 | a1i 11 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π
∈ ℝ) |
| 182 | | iocleub 45499 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → (𝑋 mod 𝑇) ≤ π) |
| 183 | 127, 128,
182 | mp3an12 1453 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≤ π) |
| 184 | 183 | adantr 480 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ≤ π) |
| 185 | | ax-1cn 11192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℂ |
| 186 | 185, 14 | mulcomi 11248 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1
· π) = (π · 1) |
| 187 | 83, 186 | eqtr3i 2761 |
. . . . . . . . . . . . . . . . . 18
⊢ π =
(π · 1) |
| 188 | 187 | oveq1i 7420 |
. . . . . . . . . . . . . . . . 17
⊢ (π +
(π · (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π ·
(2 · (⌊‘(𝑋 / 𝑇))))) |
| 189 | 169, 14 | mulcomi 11248 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2
· π) = (π · 2) |
| 190 | 40, 189 | eqtri 2759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑇 = (π ·
2) |
| 191 | 190 | oveq1i 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 · (⌊‘(𝑋 / 𝑇))) = ((π · 2) ·
(⌊‘(𝑋 / 𝑇))) |
| 192 | 111, 62 | gtneii 11352 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑇 ≠ 0 |
| 193 | 4, 59, 192 | redivcli 12013 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 / 𝑇) ∈ ℝ |
| 194 | | flcl 13817 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 / 𝑇) ∈ ℝ →
(⌊‘(𝑋 / 𝑇)) ∈
ℤ) |
| 195 | 193, 194 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(⌊‘(𝑋 /
𝑇)) ∈
ℤ |
| 196 | | zcn 12598 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⌊‘(𝑋 /
𝑇)) ∈ ℤ →
(⌊‘(𝑋 / 𝑇)) ∈
ℂ) |
| 197 | 195, 196 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(⌊‘(𝑋 /
𝑇)) ∈
ℂ |
| 198 | 14, 169, 197 | mulassi 11251 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((π
· 2) · (⌊‘(𝑋 / 𝑇))) = (π · (2 ·
(⌊‘(𝑋 / 𝑇)))) |
| 199 | 191, 198 | eqtri 2759 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 · (⌊‘(𝑋 / 𝑇))) = (π · (2 ·
(⌊‘(𝑋 / 𝑇)))) |
| 200 | 199 | oveq2i 7421 |
. . . . . . . . . . . . . . . . 17
⊢ (π +
(𝑇 ·
(⌊‘(𝑋 / 𝑇)))) = (π + (π · (2
· (⌊‘(𝑋
/ 𝑇))))) |
| 201 | 169, 197 | mulcli 11247 |
. . . . . . . . . . . . . . . . . 18
⊢ (2
· (⌊‘(𝑋
/ 𝑇))) ∈
ℂ |
| 202 | 14, 185, 201 | adddii 11252 |
. . . . . . . . . . . . . . . . 17
⊢ (π
· (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π ·
(2 · (⌊‘(𝑋 / 𝑇))))) |
| 203 | 188, 200,
202 | 3eqtr4ri 2770 |
. . . . . . . . . . . . . . . 16
⊢ (π
· (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) |
| 204 | 203 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (π =
(𝑋 mod 𝑇) → (π · (1 + (2 ·
(⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
| 205 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (π =
(𝑋 mod 𝑇) → π = (𝑋 mod 𝑇)) |
| 206 | | modval 13893 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
| 207 | 4, 63, 206 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) |
| 208 | 205, 207 | eqtrdi 2787 |
. . . . . . . . . . . . . . . 16
⊢ (π =
(𝑋 mod 𝑇) → π = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
| 209 | 208 | oveq1d 7425 |
. . . . . . . . . . . . . . 15
⊢ (π =
(𝑋 mod 𝑇) → (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇))))) |
| 210 | 27 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (π =
(𝑋 mod 𝑇) → 𝑋 ∈ ℂ) |
| 211 | 59 | recni 11254 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑇 ∈ ℂ |
| 212 | 211, 197 | mulcli 11247 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ |
| 213 | 212 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (π =
(𝑋 mod 𝑇) → (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ) |
| 214 | 210, 213 | npcand 11603 |
. . . . . . . . . . . . . . 15
⊢ (π =
(𝑋 mod 𝑇) → ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = 𝑋) |
| 215 | 204, 209,
214 | 3eqtrrd 2776 |
. . . . . . . . . . . . . 14
⊢ (π =
(𝑋 mod 𝑇) → 𝑋 = (π · (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))))) |
| 216 | 215 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 / π) = ((π · (1 + (2 ·
(⌊‘(𝑋 / 𝑇))))) / π)) |
| 217 | 185, 201 | addcli 11246 |
. . . . . . . . . . . . . 14
⊢ (1 + (2
· (⌊‘(𝑋
/ 𝑇)))) ∈
ℂ |
| 218 | 217, 14, 35 | divcan3i 11992 |
. . . . . . . . . . . . 13
⊢ ((π
· (1 + (2 · (⌊‘(𝑋 / 𝑇))))) / π) = (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))) |
| 219 | 216, 218 | eqtrdi 2787 |
. . . . . . . . . . . 12
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 / π) = (1 + (2 ·
(⌊‘(𝑋 / 𝑇))))) |
| 220 | | 1z 12627 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℤ |
| 221 | | zmulcl 12646 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℤ ∧ (⌊‘(𝑋 / 𝑇)) ∈ ℤ) → (2 ·
(⌊‘(𝑋 / 𝑇))) ∈
ℤ) |
| 222 | 2, 195, 221 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ (2
· (⌊‘(𝑋
/ 𝑇))) ∈
ℤ |
| 223 | | zaddcl 12637 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℤ ∧ (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ) → (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))) ∈
ℤ) |
| 224 | 220, 222,
223 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (1 + (2
· (⌊‘(𝑋
/ 𝑇)))) ∈
ℤ |
| 225 | 224 | a1i 11 |
. . . . . . . . . . . 12
⊢ (π =
(𝑋 mod 𝑇) → (1 + (2 ·
(⌊‘(𝑋 / 𝑇)))) ∈
ℤ) |
| 226 | 219, 225 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 / π) ∈ ℤ) |
| 227 | 226, 7 | sylibr 234 |
. . . . . . . . . 10
⊢ (π =
(𝑋 mod 𝑇) → (𝑋 mod π) = 0) |
| 228 | 227 | necon3bi 2959 |
. . . . . . . . 9
⊢ (¬
(𝑋 mod π) = 0 →
π ≠ (𝑋 mod 𝑇)) |
| 229 | 228 | adantl 481 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π ≠
(𝑋 mod 𝑇)) |
| 230 | 180, 181,
184, 229 | leneltd 11394 |
. . . . . . 7
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) < π) |
| 231 | | iftrue 4511 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) < π → if((𝑋 mod 𝑇) < π, 1, -1) = 1) |
| 232 | 156, 231 | eqtrid 2783 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) < π → (𝐹‘𝑋) = 1) |
| 233 | 230, 232 | syl 17 |
. . . . . 6
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹‘𝑋) = 1) |
| 234 | 179, 233 | oveq12d 7428 |
. . . . 5
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) →
(if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) +
(𝐹‘𝑋)) = (1 + 1)) |
| 235 | 234 | oveq1d 7425 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) →
((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) +
(𝐹‘𝑋)) / 2) = ((1 + 1) / 2)) |
| 236 | | 1p1e2 12370 |
. . . . . . 7
⊢ (1 + 1) =
2 |
| 237 | 236 | oveq1i 7420 |
. . . . . 6
⊢ ((1 + 1)
/ 2) = (2 / 2) |
| 238 | | 2div2e1 12386 |
. . . . . 6
⊢ (2 / 2) =
1 |
| 239 | 237, 238 | eqtr2i 2760 |
. . . . 5
⊢ 1 = ((1 +
1) / 2) |
| 240 | 233, 239 | eqtr2di 2788 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → ((1 + 1)
/ 2) = (𝐹‘𝑋)) |
| 241 | | iffalse 4514 |
. . . . . 6
⊢ (¬
(𝑋 mod π) = 0 →
if((𝑋 mod π) = 0, 0,
(𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 242 | 172, 241 | eqtr2id 2784 |
. . . . 5
⊢ (¬
(𝑋 mod π) = 0 →
(𝐹‘𝑋) = 𝑌) |
| 243 | 242 | adantl 481 |
. . . 4
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹‘𝑋) = 𝑌) |
| 244 | 235, 240,
243 | 3eqtrrd 2776 |
. . 3
⊢ (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 245 | 177, 244 | pm2.61dan 812 |
. 2
⊢ ((𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 246 | 131 | necon2bi 2963 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 → ¬ (𝑋 mod 𝑇) ∈ (0(,]π)) |
| 247 | 246 | iffalsed 4516 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
-1) |
| 248 | | id 22 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = 0) |
| 249 | 248, 34 | eqbrtrdi 5163 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) < π) |
| 250 | 249 | iftrued 4513 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) < π, 1, -1) = 1) |
| 251 | 156, 250 | eqtrid 2783 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) = 0 → (𝐹‘𝑋) = 1) |
| 252 | 247, 251 | oveq12d 7428 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) = 0 → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = (-1 + 1)) |
| 253 | 252 | oveq1d 7425 |
. . . . 5
⊢ ((𝑋 mod 𝑇) = 0 → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = ((-1 + 1) / 2)) |
| 254 | | neg1cn 12359 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
| 255 | 185, 254,
165 | addcomli 11432 |
. . . . . . . 8
⊢ (-1 + 1)
= 0 |
| 256 | 255 | oveq1i 7420 |
. . . . . . 7
⊢ ((-1 + 1)
/ 2) = (0 / 2) |
| 257 | 256, 170 | eqtri 2759 |
. . . . . 6
⊢ ((-1 + 1)
/ 2) = 0 |
| 258 | 257 | a1i 11 |
. . . . 5
⊢ ((𝑋 mod 𝑇) = 0 → ((-1 + 1) / 2) =
0) |
| 259 | 40 | oveq2i 7421 |
. . . . . . . . . . . . 13
⊢ (𝑋 / 𝑇) = (𝑋 / (2 · π)) |
| 260 | | 2cnne0 12455 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 261 | 14, 35 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (π
∈ ℂ ∧ π ≠ 0) |
| 262 | | divdiv1 11957 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) →
((𝑋 / 2) / π) = (𝑋 / (2 ·
π))) |
| 263 | 27, 260, 261, 262 | mp3an 1463 |
. . . . . . . . . . . . 13
⊢ ((𝑋 / 2) / π) = (𝑋 / (2 ·
π)) |
| 264 | 27, 169, 14, 44, 35 | divdiv32i 12001 |
. . . . . . . . . . . . 13
⊢ ((𝑋 / 2) / π) = ((𝑋 / π) / 2) |
| 265 | 259, 263,
264 | 3eqtr2i 2765 |
. . . . . . . . . . . 12
⊢ (𝑋 / 𝑇) = ((𝑋 / π) / 2) |
| 266 | 265 | oveq2i 7421 |
. . . . . . . . . . 11
⊢ (2
· (𝑋 / 𝑇)) = (2 · ((𝑋 / π) / 2)) |
| 267 | 27, 14, 35 | divcli 11988 |
. . . . . . . . . . . 12
⊢ (𝑋 / π) ∈
ℂ |
| 268 | 267, 169,
44 | divcan2i 11989 |
. . . . . . . . . . 11
⊢ (2
· ((𝑋 / π) / 2))
= (𝑋 /
π) |
| 269 | 266, 268 | eqtr2i 2760 |
. . . . . . . . . 10
⊢ (𝑋 / π) = (2 · (𝑋 / 𝑇)) |
| 270 | 2 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑋 / 𝑇) ∈ ℤ → 2 ∈
ℤ) |
| 271 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / 𝑇) ∈ ℤ) |
| 272 | 270, 271 | zmulcld 12708 |
. . . . . . . . . 10
⊢ ((𝑋 / 𝑇) ∈ ℤ → (2 · (𝑋 / 𝑇)) ∈ ℤ) |
| 273 | 269, 272 | eqeltrid 2839 |
. . . . . . . . 9
⊢ ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / π) ∈ ℤ) |
| 274 | 65, 273 | sylbi 217 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 / π) ∈ ℤ) |
| 275 | 274, 7 | sylibr 234 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod π) = 0) |
| 276 | 275 | iftrued 4513 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) = 0 → if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) = 0) |
| 277 | 172, 276 | eqtr2id 2784 |
. . . . 5
⊢ ((𝑋 mod 𝑇) = 0 → 0 = 𝑌) |
| 278 | 253, 258,
277 | 3eqtrrd 2776 |
. . . 4
⊢ ((𝑋 mod 𝑇) = 0 → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 279 | 278 | adantl 481 |
. . 3
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 280 | 128 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈
ℝ*) |
| 281 | 59 | rexri 11298 |
. . . . . 6
⊢ 𝑇 ∈
ℝ* |
| 282 | 281 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑇 ∈
ℝ*) |
| 283 | 139 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ) |
| 284 | | pm4.56 990 |
. . . . . . . 8
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) ↔ ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
| 285 | 284 | biimpi 216 |
. . . . . . 7
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
| 286 | | olc 868 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) = 0 → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
| 287 | 286 | adantl 481 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ≤ π ∧ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
| 288 | 127 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 ∈
ℝ*) |
| 289 | 128 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈
ℝ*) |
| 290 | 140 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈
ℝ*) |
| 291 | | 0red 11243 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → 0 ∈
ℝ) |
| 292 | 139 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ∈ ℝ) |
| 293 | | modge0 13901 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ 0 ≤ (𝑋 mod 𝑇)) |
| 294 | 4, 63, 293 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ 0 ≤
(𝑋 mod 𝑇) |
| 295 | 294 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → 0 ≤ (𝑋 mod 𝑇)) |
| 296 | | neqne 2941 |
. . . . . . . . . . . 12
⊢ (¬
(𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≠ 0) |
| 297 | 291, 292,
295, 296 | leneltd 11394 |
. . . . . . . . . . 11
⊢ (¬
(𝑋 mod 𝑇) = 0 → 0 < (𝑋 mod 𝑇)) |
| 298 | 297 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 < (𝑋 mod 𝑇)) |
| 299 | | simpl 482 |
. . . . . . . . . 10
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π) |
| 300 | 288, 289,
290, 298, 299 | eliocd 45503 |
. . . . . . . . 9
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (0(,]π)) |
| 301 | 300 | orcd 873 |
. . . . . . . 8
⊢ (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
| 302 | 287, 301 | pm2.61dan 812 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ≤ π → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0)) |
| 303 | 285, 302 | nsyl 140 |
. . . . . 6
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ (𝑋 mod 𝑇) ≤ π) |
| 304 | 33 | a1i 11 |
. . . . . . 7
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈
ℝ) |
| 305 | 304, 283 | ltnled 11387 |
. . . . . 6
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π)) |
| 306 | 303, 305 | mpbird 257 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π < (𝑋 mod 𝑇)) |
| 307 | | modlt 13902 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
→ (𝑋 mod 𝑇) < 𝑇) |
| 308 | 4, 63, 307 | mp2an 692 |
. . . . . 6
⊢ (𝑋 mod 𝑇) < 𝑇 |
| 309 | 308 | a1i 11 |
. . . . 5
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) < 𝑇) |
| 310 | 280, 282,
283, 306, 309 | eliood 45494 |
. . . 4
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (π(,)𝑇)) |
| 311 | 127 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 0 ∈
ℝ*) |
| 312 | 33 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π ∈
ℝ) |
| 313 | 140 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈
ℝ*) |
| 314 | | ioogtlb 45491 |
. . . . . . . . . 10
⊢ ((π
∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (π(,)𝑇)) → π < (𝑋 mod 𝑇)) |
| 315 | 128, 281,
314 | mp3an12 1453 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π < (𝑋 mod 𝑇)) |
| 316 | 311, 312,
313, 315 | gtnelioc 45487 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ∈ (0(,]π)) |
| 317 | 316 | iffalsed 4516 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) =
-1) |
| 318 | 139 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ) |
| 319 | 312, 318,
315 | ltnsymd 11389 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) < π) |
| 320 | 319 | iffalsed 4516 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) < π, 1, -1) = -1) |
| 321 | 156, 320 | eqtrid 2783 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝐹‘𝑋) = -1) |
| 322 | 317, 321 | oveq12d 7428 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) = (-1 + -1)) |
| 323 | 322 | oveq1d 7425 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) = ((-1 + -1) / 2)) |
| 324 | | df-2 12308 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
| 325 | 324 | negeqi 11480 |
. . . . . . . . 9
⊢ -2 = -(1
+ 1) |
| 326 | 185, 185 | negdii 11572 |
. . . . . . . . 9
⊢ -(1 + 1)
= (-1 + -1) |
| 327 | 325, 326 | eqtr2i 2760 |
. . . . . . . 8
⊢ (-1 + -1)
= -2 |
| 328 | 327 | oveq1i 7420 |
. . . . . . 7
⊢ ((-1 +
-1) / 2) = (-2 / 2) |
| 329 | | divneg 11938 |
. . . . . . . 8
⊢ ((2
∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(2 / 2) = (-2 /
2)) |
| 330 | 169, 169,
44, 329 | mp3an 1463 |
. . . . . . 7
⊢ -(2 / 2)
= (-2 / 2) |
| 331 | 238 | negeqi 11480 |
. . . . . . 7
⊢ -(2 / 2)
= -1 |
| 332 | 328, 330,
331 | 3eqtr2i 2765 |
. . . . . 6
⊢ ((-1 +
-1) / 2) = -1 |
| 333 | 332 | a1i 11 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((-1 + -1) / 2) =
-1) |
| 334 | 172 | a1i 11 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋))) |
| 335 | 312, 318 | ltnled 11387 |
. . . . . . . . 9
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π)) |
| 336 | 315, 335 | mpbid 232 |
. . . . . . . 8
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ≤ π) |
| 337 | 248, 112 | eqbrtrdi 5163 |
. . . . . . . . . 10
⊢ ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≤ π) |
| 338 | 337 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π) |
| 339 | 126 | orcanai 1004 |
. . . . . . . . . 10
⊢ (((𝑋 mod π) = 0 ∧ ¬
(𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π) |
| 340 | 339, 144 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 mod π) = 0 ∧ ¬
(𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π) |
| 341 | 338, 340 | pm2.61dan 812 |
. . . . . . . 8
⊢ ((𝑋 mod π) = 0 → (𝑋 mod 𝑇) ≤ π) |
| 342 | 336, 341 | nsyl 140 |
. . . . . . 7
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod π) = 0) |
| 343 | 342 | iffalsed 4516 |
. . . . . 6
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 344 | 334, 343,
321 | 3eqtrrd 2776 |
. . . . 5
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -1 = 𝑌) |
| 345 | 323, 333,
344 | 3eqtrrd 2776 |
. . . 4
⊢ ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 346 | 310, 345 | syl 17 |
. . 3
⊢ ((¬
(𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 347 | 279, 346 | pm2.61dan 812 |
. 2
⊢ (¬
(𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2)) |
| 348 | 245, 347 | pm2.61i 182 |
1
⊢ 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) |