Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierswlem Structured version   Visualization version   GIF version

Theorem fourierswlem 46215
Description: The Fourier series for the square wave 𝐹 converges to 𝑌, a simpler expression for this special case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierswlem.t 𝑇 = (2 · π)
fourierswlem.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
fourierswlem.x 𝑋 ∈ ℝ
fourierswlem.y 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))
Assertion
Ref Expression
fourierswlem 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
Distinct variable groups:   𝑥,𝑇   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑌(𝑥)

Proof of Theorem fourierswlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → 2 ∥ (𝑋 / π))
2 2z 12525 . . . . . . . . . . . 12 2 ∈ ℤ
32a1i 11 . . . . . . . . . . 11 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → 2 ∈ ℤ)
4 fourierswlem.x . . . . . . . . . . . . . 14 𝑋 ∈ ℝ
5 pirp 26386 . . . . . . . . . . . . . 14 π ∈ ℝ+
6 mod0 13798 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ π ∈ ℝ+) → ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈ ℤ))
74, 5, 6mp2an 692 . . . . . . . . . . . . 13 ((𝑋 mod π) = 0 ↔ (𝑋 / π) ∈ ℤ)
87biimpi 216 . . . . . . . . . . . 12 ((𝑋 mod π) = 0 → (𝑋 / π) ∈ ℤ)
98adantr 480 . . . . . . . . . . 11 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑋 / π) ∈ ℤ)
10 divides 16183 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ (𝑋 / π) ∈ ℤ) → (2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π)))
113, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π)))
121, 11mpbid 232 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π))
13 2cnd 12224 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → 2 ∈ ℂ)
14 picn 26383 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℂ
1514a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → π ∈ ℂ)
16 zcn 12494 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
1713, 15, 16mulassd 11157 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → ((2 · π) · 𝑘) = (2 · (π · 𝑘)))
1815, 16mulcld 11154 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (π · 𝑘) ∈ ℂ)
1913, 18mulcomd 11155 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (2 · (π · 𝑘)) = ((π · 𝑘) · 2))
2017, 19eqtrd 2764 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → ((2 · π) · 𝑘) = ((π · 𝑘) · 2))
2120adantr 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((2 · π) · 𝑘) = ((π · 𝑘) · 2))
2215, 16, 13mulassd 11157 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → ((π · 𝑘) · 2) = (π · (𝑘 · 2)))
2322adantr 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((π · 𝑘) · 2) = (π · (𝑘 · 2)))
24 id 22 . . . . . . . . . . . . . . . . . . 19 ((𝑘 · 2) = (𝑋 / π) → (𝑘 · 2) = (𝑋 / π))
2524eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((𝑘 · 2) = (𝑋 / π) → (𝑋 / π) = (𝑘 · 2))
2625adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / π) = (𝑘 · 2))
274recni 11148 . . . . . . . . . . . . . . . . . . 19 𝑋 ∈ ℂ
2827a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 ∈ ℂ)
2914a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ∈ ℂ)
3016adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈ ℂ)
31 2cnd 12224 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 2 ∈ ℂ)
3230, 31mulcld 11154 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑘 · 2) ∈ ℂ)
33 pire 26382 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ
34 pipos 26384 . . . . . . . . . . . . . . . . . . . 20 0 < π
3533, 34gt0ne0ii 11674 . . . . . . . . . . . . . . . . . . 19 π ≠ 0
3635a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → π ≠ 0)
3728, 29, 32, 36divmuld 11940 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → ((𝑋 / π) = (𝑘 · 2) ↔ (π · (𝑘 · 2)) = 𝑋))
3826, 37mpbid 232 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (π · (𝑘 · 2)) = 𝑋)
3921, 23, 383eqtrrd 2769 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑋 = ((2 · π) · 𝑘))
40 fourierswlem.t . . . . . . . . . . . . . . . 16 𝑇 = (2 · π)
4140a1i 11 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑇 = (2 · π))
4239, 41oveq12d 7371 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = (((2 · π) · 𝑘) / (2 · π)))
4313, 15mulcld 11154 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (2 · π) ∈ ℂ)
44 2ne0 12250 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
4544a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → 2 ≠ 0)
4635a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → π ≠ 0)
4713, 15, 45, 46mulne0d 11790 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (2 · π) ≠ 0)
4816, 43, 47divcan3d 11923 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((2 · π) · 𝑘) / (2 · π)) = 𝑘)
4948adantr 480 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (((2 · π) · 𝑘) / (2 · π)) = 𝑘)
5042, 49eqtrd 2764 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) = 𝑘)
51 simpl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → 𝑘 ∈ ℤ)
5250, 51eqeltrd 2828 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ (𝑘 · 2) = (𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ)
5352ex 412 . . . . . . . . . . 11 (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ))
5453a1i 11 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑘 ∈ ℤ → ((𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ)))
5554rexlimdv 3128 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑋 / π) → (𝑋 / 𝑇) ∈ ℤ))
5612, 55mpd 15 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑋 / 𝑇) ∈ ℤ)
57 2re 12220 . . . . . . . . . . . 12 2 ∈ ℝ
5857, 33remulcli 11150 . . . . . . . . . . 11 (2 · π) ∈ ℝ
5940, 58eqeltri 2824 . . . . . . . . . 10 𝑇 ∈ ℝ
60 2pos 12249 . . . . . . . . . . . 12 0 < 2
6157, 33, 60, 34mulgt0ii 11267 . . . . . . . . . . 11 0 < (2 · π)
6261, 40breqtrri 5122 . . . . . . . . . 10 0 < 𝑇
6359, 62elrpii 12914 . . . . . . . . 9 𝑇 ∈ ℝ+
64 mod0 13798 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ))
654, 63, 64mp2an 692 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 ↔ (𝑋 / 𝑇) ∈ ℤ)
6656, 65sylibr 234 . . . . . . 7 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → (𝑋 mod 𝑇) = 0)
6766orcd 873 . . . . . 6 (((𝑋 mod π) = 0 ∧ 2 ∥ (𝑋 / π)) → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π))
68 odd2np1 16270 . . . . . . . . . 10 ((𝑋 / π) ∈ ℤ → (¬ 2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π)))
697, 68sylbi 217 . . . . . . . . 9 ((𝑋 mod π) = 0 → (¬ 2 ∥ (𝑋 / π) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π)))
7069biimpa 476 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π))
7113, 16mulcld 11154 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (2 · 𝑘) ∈ ℂ)
7271adantr 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (2 · 𝑘) ∈ ℂ)
73 1cnd 11129 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 1 ∈ ℂ)
7414a1i 11 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π ∈ ℂ)
7572, 73, 74adddird 11159 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (((2 · 𝑘) + 1) · π) = (((2 · 𝑘) · π) + (1 · π)))
7613, 16mulcomd 11155 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (2 · 𝑘) = (𝑘 · 2))
7776oveq1d 7368 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → ((2 · 𝑘) · π) = ((𝑘 · 2) · π))
7816, 13, 15mulassd 11157 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → ((𝑘 · 2) · π) = (𝑘 · (2 · π)))
7940eqcomi 2738 . . . . . . . . . . . . . . . . . . . 20 (2 · π) = 𝑇
8079a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (2 · π) = 𝑇)
8180oveq2d 7369 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (𝑘 · (2 · π)) = (𝑘 · 𝑇))
8277, 78, 813eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → ((2 · 𝑘) · π) = (𝑘 · 𝑇))
8314mullidi 11139 . . . . . . . . . . . . . . . . . 18 (1 · π) = π
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (1 · π) = π)
8582, 84oveq12d 7371 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (((2 · 𝑘) · π) + (1 · π)) = ((𝑘 · 𝑇) + π))
8685adantr 480 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (((2 · 𝑘) · π) + (1 · π)) = ((𝑘 · 𝑇) + π))
8740, 43eqeltrid 2832 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → 𝑇 ∈ ℂ)
8816, 87mulcld 11154 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (𝑘 · 𝑇) ∈ ℂ)
8988, 15addcomd 11336 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇)))
9089adantr 480 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((𝑘 · 𝑇) + π) = (π + (𝑘 · 𝑇)))
9175, 86, 903eqtrrd 2769 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (π + (𝑘 · 𝑇)) = (((2 · 𝑘) + 1) · π))
92 peano2cn 11306 . . . . . . . . . . . . . . . . 17 ((2 · 𝑘) ∈ ℂ → ((2 · 𝑘) + 1) ∈ ℂ)
9371, 92syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → ((2 · 𝑘) + 1) ∈ ℂ)
9493, 15mulcomd 11155 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((2 · 𝑘) + 1) · π) = (π · ((2 · 𝑘) + 1)))
9594adantr 480 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (((2 · 𝑘) + 1) · π) = (π · ((2 · 𝑘) + 1)))
96 id 22 . . . . . . . . . . . . . . . . 17 (((2 · 𝑘) + 1) = (𝑋 / π) → ((2 · 𝑘) + 1) = (𝑋 / π))
9796eqcomd 2735 . . . . . . . . . . . . . . . 16 (((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 / π) = ((2 · 𝑘) + 1))
9897adantl 481 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (𝑋 / π) = ((2 · 𝑘) + 1))
9927a1i 11 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 𝑋 ∈ ℂ)
10093adantr 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((2 · 𝑘) + 1) ∈ ℂ)
10135a1i 11 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π ≠ 0)
10299, 74, 100, 101divmuld 11940 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((𝑋 / π) = ((2 · 𝑘) + 1) ↔ (π · ((2 · 𝑘) + 1)) = 𝑋))
10398, 102mpbid 232 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (π · ((2 · 𝑘) + 1)) = 𝑋)
10491, 95, 1033eqtrrd 2769 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 𝑋 = (π + (𝑘 · 𝑇)))
105104oveq1d 7368 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = ((π + (𝑘 · 𝑇)) mod 𝑇))
106 modcyc 13828 . . . . . . . . . . . . . 14 ((π ∈ ℝ ∧ 𝑇 ∈ ℝ+𝑘 ∈ ℤ) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇))
10733, 63, 106mp3an12 1453 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇))
108107adantr 480 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → ((π + (𝑘 · 𝑇)) mod 𝑇) = (π mod 𝑇))
10933a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π ∈ ℝ)
11063a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 𝑇 ∈ ℝ+)
111 0re 11136 . . . . . . . . . . . . . . 15 0 ∈ ℝ
112111, 33, 34ltleii 11257 . . . . . . . . . . . . . 14 0 ≤ π
113112a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → 0 ≤ π)
114 2timesgt 45273 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → π < (2 · π))
1155, 114ax-mp 5 . . . . . . . . . . . . . . 15 π < (2 · π)
116115, 40breqtrri 5122 . . . . . . . . . . . . . 14 π < 𝑇
117116a1i 11 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → π < 𝑇)
118 modid 13818 . . . . . . . . . . . . 13 (((π ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ π ∧ π < 𝑇)) → (π mod 𝑇) = π)
119109, 110, 113, 117, 118syl22anc 838 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (π mod 𝑇) = π)
120105, 108, 1193eqtrd 2768 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = (𝑋 / π)) → (𝑋 mod 𝑇) = π)
121120ex 412 . . . . . . . . . 10 (𝑘 ∈ ℤ → (((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π))
122121a1i 11 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → (𝑘 ∈ ℤ → (((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π)))
123122rexlimdv 3128 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (𝑋 / π) → (𝑋 mod 𝑇) = π))
12470, 123mpd 15 . . . . . . 7 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → (𝑋 mod 𝑇) = π)
125124olcd 874 . . . . . 6 (((𝑋 mod π) = 0 ∧ ¬ 2 ∥ (𝑋 / π)) → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π))
12667, 125pm2.61dan 812 . . . . 5 ((𝑋 mod π) = 0 → ((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π))
127 0xr 11181 . . . . . . . 8 0 ∈ ℝ*
12833rexri 11192 . . . . . . . 8 π ∈ ℝ*
129 iocgtlb 45487 . . . . . . . 8 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → 0 < (𝑋 mod 𝑇))
130127, 128, 129mp3an12 1453 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (0(,]π) → 0 < (𝑋 mod 𝑇))
131130gt0ne0d 11702 . . . . . 6 ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≠ 0)
132131neneqd 2930 . . . . 5 ((𝑋 mod 𝑇) ∈ (0(,]π) → ¬ (𝑋 mod 𝑇) = 0)
133 pm2.53 851 . . . . . 6 (((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) → (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = π))
134133imp 406 . . . . 5 ((((𝑋 mod 𝑇) = 0 ∨ (𝑋 mod 𝑇) = π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π)
135126, 132, 134syl2anr 597 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) = π)
136127a1i 11 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → 0 ∈ ℝ*)
137128a1i 11 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → π ∈ ℝ*)
138 modcl 13795 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) ∈ ℝ)
1394, 63, 138mp2an 692 . . . . . . . . . . . . . 14 (𝑋 mod 𝑇) ∈ ℝ
140139rexri 11192 . . . . . . . . . . . . 13 (𝑋 mod 𝑇) ∈ ℝ*
141140a1i 11 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈ ℝ*)
142 id 22 . . . . . . . . . . . . 13 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) = π)
14334, 142breqtrrid 5133 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → 0 < (𝑋 mod 𝑇))
14433eqlei2 11245 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ≤ π)
145136, 137, 141, 143, 144eliocd 45492 . . . . . . . . . . 11 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈ (0(,]π))
146145iftrued 4486 . . . . . . . . . 10 ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
147146adantl 481 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
148 oveq1 7360 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 mod 𝑇) = (𝑋 mod 𝑇))
149148breq1d 5105 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 mod 𝑇) < π ↔ (𝑋 mod 𝑇) < π))
150149ifbid 4502 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → if((𝑥 mod 𝑇) < π, 1, -1) = if((𝑋 mod 𝑇) < π, 1, -1))
151 fourierswlem.f . . . . . . . . . . . . 13 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
152 1ex 11130 . . . . . . . . . . . . . 14 1 ∈ V
153 negex 11379 . . . . . . . . . . . . . 14 -1 ∈ V
154152, 153ifex 4529 . . . . . . . . . . . . 13 if((𝑋 mod 𝑇) < π, 1, -1) ∈ V
155150, 151, 154fvmpt 6934 . . . . . . . . . . . 12 (𝑋 ∈ ℝ → (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1))
1564, 155ax-mp 5 . . . . . . . . . . 11 (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1)
157139a1i 11 . . . . . . . . . . . . . 14 ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ∈ ℝ)
158 id 22 . . . . . . . . . . . . . 14 ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) < π)
159157, 158ltned 11270 . . . . . . . . . . . . 13 ((𝑋 mod 𝑇) < π → (𝑋 mod 𝑇) ≠ π)
160159necon2bi 2955 . . . . . . . . . . . 12 ((𝑋 mod 𝑇) = π → ¬ (𝑋 mod 𝑇) < π)
161160iffalsed 4489 . . . . . . . . . . 11 ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) < π, 1, -1) = -1)
162156, 161eqtrid 2776 . . . . . . . . . 10 ((𝑋 mod 𝑇) = π → (𝐹𝑋) = -1)
163162adantl 481 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (𝐹𝑋) = -1)
164147, 163oveq12d 7371 . . . . . . . 8 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (1 + -1))
165 1pneg1e0 12260 . . . . . . . 8 (1 + -1) = 0
166164, 165eqtrdi 2780 . . . . . . 7 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = 0)
167166oveq1d 7368 . . . . . 6 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = (0 / 2))
168167adantll 714 . . . . 5 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = (0 / 2))
169 2cn 12221 . . . . . . 7 2 ∈ ℂ
170169, 44div0i 11876 . . . . . 6 (0 / 2) = 0
171170a1i 11 . . . . 5 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → (0 / 2) = 0)
172 fourierswlem.y . . . . . . 7 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))
173 iftrue 4484 . . . . . . 7 ((𝑋 mod π) = 0 → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = 0)
174172, 173eqtr2id 2777 . . . . . 6 ((𝑋 mod π) = 0 → 0 = 𝑌)
175174ad2antlr 727 . . . . 5 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 0 = 𝑌)
176168, 171, 1753eqtrrd 2769 . . . 4 ((((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) ∧ (𝑋 mod 𝑇) = π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
177135, 176mpdan 687 . . 3 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
178 iftrue 4484 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (0(,]π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
179178adantr 480 . . . . . 6 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
180139a1i 11 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ∈ ℝ)
18133a1i 11 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π ∈ ℝ)
182 iocleub 45488 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,]π)) → (𝑋 mod 𝑇) ≤ π)
183127, 128, 182mp3an12 1453 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (0(,]π) → (𝑋 mod 𝑇) ≤ π)
184183adantr 480 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) ≤ π)
185 ax-1cn 11086 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
186185, 14mulcomi 11142 . . . . . . . . . . . . . . . . . . 19 (1 · π) = (π · 1)
18783, 186eqtr3i 2754 . . . . . . . . . . . . . . . . . 18 π = (π · 1)
188187oveq1i 7363 . . . . . . . . . . . . . . . . 17 (π + (π · (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π · (2 · (⌊‘(𝑋 / 𝑇)))))
189169, 14mulcomi 11142 . . . . . . . . . . . . . . . . . . . . 21 (2 · π) = (π · 2)
19040, 189eqtri 2752 . . . . . . . . . . . . . . . . . . . 20 𝑇 = (π · 2)
191190oveq1i 7363 . . . . . . . . . . . . . . . . . . 19 (𝑇 · (⌊‘(𝑋 / 𝑇))) = ((π · 2) · (⌊‘(𝑋 / 𝑇)))
192111, 62gtneii 11246 . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 ≠ 0
1934, 59, 192redivcli 11909 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 / 𝑇) ∈ ℝ
194 flcl 13717 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 / 𝑇) ∈ ℝ → (⌊‘(𝑋 / 𝑇)) ∈ ℤ)
195193, 194ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⌊‘(𝑋 / 𝑇)) ∈ ℤ
196 zcn 12494 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘(𝑋 / 𝑇)) ∈ ℤ → (⌊‘(𝑋 / 𝑇)) ∈ ℂ)
197195, 196ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (⌊‘(𝑋 / 𝑇)) ∈ ℂ
19814, 169, 197mulassi 11145 . . . . . . . . . . . . . . . . . . 19 ((π · 2) · (⌊‘(𝑋 / 𝑇))) = (π · (2 · (⌊‘(𝑋 / 𝑇))))
199191, 198eqtri 2752 . . . . . . . . . . . . . . . . . 18 (𝑇 · (⌊‘(𝑋 / 𝑇))) = (π · (2 · (⌊‘(𝑋 / 𝑇))))
200199oveq2i 7364 . . . . . . . . . . . . . . . . 17 (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = (π + (π · (2 · (⌊‘(𝑋 / 𝑇)))))
201169, 197mulcli 11141 . . . . . . . . . . . . . . . . . 18 (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ
20214, 185, 201adddii 11146 . . . . . . . . . . . . . . . . 17 (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = ((π · 1) + (π · (2 · (⌊‘(𝑋 / 𝑇)))))
203188, 200, 2023eqtr4ri 2763 . . . . . . . . . . . . . . . 16 (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇))))
204203a1i 11 . . . . . . . . . . . . . . 15 (π = (𝑋 mod 𝑇) → (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) = (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))))
205 id 22 . . . . . . . . . . . . . . . . 17 (π = (𝑋 mod 𝑇) → π = (𝑋 mod 𝑇))
206 modval 13793 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))))
2074, 63, 206mp2an 692 . . . . . . . . . . . . . . . . 17 (𝑋 mod 𝑇) = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇))))
208205, 207eqtrdi 2780 . . . . . . . . . . . . . . . 16 (π = (𝑋 mod 𝑇) → π = (𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))))
209208oveq1d 7368 . . . . . . . . . . . . . . 15 (π = (𝑋 mod 𝑇) → (π + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇)))))
21027a1i 11 . . . . . . . . . . . . . . . 16 (π = (𝑋 mod 𝑇) → 𝑋 ∈ ℂ)
21159recni 11148 . . . . . . . . . . . . . . . . . 18 𝑇 ∈ ℂ
212211, 197mulcli 11141 . . . . . . . . . . . . . . . . 17 (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ
213212a1i 11 . . . . . . . . . . . . . . . 16 (π = (𝑋 mod 𝑇) → (𝑇 · (⌊‘(𝑋 / 𝑇))) ∈ ℂ)
214210, 213npcand 11497 . . . . . . . . . . . . . . 15 (π = (𝑋 mod 𝑇) → ((𝑋 − (𝑇 · (⌊‘(𝑋 / 𝑇)))) + (𝑇 · (⌊‘(𝑋 / 𝑇)))) = 𝑋)
215204, 209, 2143eqtrrd 2769 . . . . . . . . . . . . . 14 (π = (𝑋 mod 𝑇) → 𝑋 = (π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))))
216215oveq1d 7368 . . . . . . . . . . . . 13 (π = (𝑋 mod 𝑇) → (𝑋 / π) = ((π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) / π))
217185, 201addcli 11140 . . . . . . . . . . . . . 14 (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℂ
218217, 14, 35divcan3i 11888 . . . . . . . . . . . . 13 ((π · (1 + (2 · (⌊‘(𝑋 / 𝑇))))) / π) = (1 + (2 · (⌊‘(𝑋 / 𝑇))))
219216, 218eqtrdi 2780 . . . . . . . . . . . 12 (π = (𝑋 mod 𝑇) → (𝑋 / π) = (1 + (2 · (⌊‘(𝑋 / 𝑇)))))
220 1z 12523 . . . . . . . . . . . . . 14 1 ∈ ℤ
221 zmulcl 12542 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ (⌊‘(𝑋 / 𝑇)) ∈ ℤ) → (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ)
2222, 195, 221mp2an 692 . . . . . . . . . . . . . 14 (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ
223 zaddcl 12533 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (2 · (⌊‘(𝑋 / 𝑇))) ∈ ℤ) → (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℤ)
224220, 222, 223mp2an 692 . . . . . . . . . . . . 13 (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℤ
225224a1i 11 . . . . . . . . . . . 12 (π = (𝑋 mod 𝑇) → (1 + (2 · (⌊‘(𝑋 / 𝑇)))) ∈ ℤ)
226219, 225eqeltrd 2828 . . . . . . . . . . 11 (π = (𝑋 mod 𝑇) → (𝑋 / π) ∈ ℤ)
227226, 7sylibr 234 . . . . . . . . . 10 (π = (𝑋 mod 𝑇) → (𝑋 mod π) = 0)
228227necon3bi 2951 . . . . . . . . 9 (¬ (𝑋 mod π) = 0 → π ≠ (𝑋 mod 𝑇))
229228adantl 481 . . . . . . . 8 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → π ≠ (𝑋 mod 𝑇))
230180, 181, 184, 229leneltd 11288 . . . . . . 7 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝑋 mod 𝑇) < π)
231 iftrue 4484 . . . . . . . 8 ((𝑋 mod 𝑇) < π → if((𝑋 mod 𝑇) < π, 1, -1) = 1)
232156, 231eqtrid 2776 . . . . . . 7 ((𝑋 mod 𝑇) < π → (𝐹𝑋) = 1)
233230, 232syl 17 . . . . . 6 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹𝑋) = 1)
234179, 233oveq12d 7371 . . . . 5 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (1 + 1))
235234oveq1d 7368 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = ((1 + 1) / 2))
236 1p1e2 12266 . . . . . . 7 (1 + 1) = 2
237236oveq1i 7363 . . . . . 6 ((1 + 1) / 2) = (2 / 2)
238 2div2e1 12282 . . . . . 6 (2 / 2) = 1
239237, 238eqtr2i 2753 . . . . 5 1 = ((1 + 1) / 2)
240233, 239eqtr2di 2781 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → ((1 + 1) / 2) = (𝐹𝑋))
241 iffalse 4487 . . . . . 6 (¬ (𝑋 mod π) = 0 → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = (𝐹𝑋))
242172, 241eqtr2id 2777 . . . . 5 (¬ (𝑋 mod π) = 0 → (𝐹𝑋) = 𝑌)
243242adantl 481 . . . 4 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → (𝐹𝑋) = 𝑌)
244235, 240, 2433eqtrrd 2769 . . 3 (((𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod π) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
245177, 244pm2.61dan 812 . 2 ((𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
246131necon2bi 2955 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 → ¬ (𝑋 mod 𝑇) ∈ (0(,]π))
247246iffalsed 4489 . . . . . . 7 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = -1)
248 id 22 . . . . . . . . . 10 ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = 0)
249248, 34eqbrtrdi 5134 . . . . . . . . 9 ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) < π)
250249iftrued 4486 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) < π, 1, -1) = 1)
251156, 250eqtrid 2776 . . . . . . 7 ((𝑋 mod 𝑇) = 0 → (𝐹𝑋) = 1)
252247, 251oveq12d 7371 . . . . . 6 ((𝑋 mod 𝑇) = 0 → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (-1 + 1))
253252oveq1d 7368 . . . . 5 ((𝑋 mod 𝑇) = 0 → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = ((-1 + 1) / 2))
254 neg1cn 12131 . . . . . . . . 9 -1 ∈ ℂ
255185, 254, 165addcomli 11326 . . . . . . . 8 (-1 + 1) = 0
256255oveq1i 7363 . . . . . . 7 ((-1 + 1) / 2) = (0 / 2)
257256, 170eqtri 2752 . . . . . 6 ((-1 + 1) / 2) = 0
258257a1i 11 . . . . 5 ((𝑋 mod 𝑇) = 0 → ((-1 + 1) / 2) = 0)
25940oveq2i 7364 . . . . . . . . . . . . 13 (𝑋 / 𝑇) = (𝑋 / (2 · π))
260 2cnne0 12351 . . . . . . . . . . . . . 14 (2 ∈ ℂ ∧ 2 ≠ 0)
26114, 35pm3.2i 470 . . . . . . . . . . . . . 14 (π ∈ ℂ ∧ π ≠ 0)
262 divdiv1 11853 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((𝑋 / 2) / π) = (𝑋 / (2 · π)))
26327, 260, 261, 262mp3an 1463 . . . . . . . . . . . . 13 ((𝑋 / 2) / π) = (𝑋 / (2 · π))
26427, 169, 14, 44, 35divdiv32i 11897 . . . . . . . . . . . . 13 ((𝑋 / 2) / π) = ((𝑋 / π) / 2)
265259, 263, 2643eqtr2i 2758 . . . . . . . . . . . 12 (𝑋 / 𝑇) = ((𝑋 / π) / 2)
266265oveq2i 7364 . . . . . . . . . . 11 (2 · (𝑋 / 𝑇)) = (2 · ((𝑋 / π) / 2))
26727, 14, 35divcli 11884 . . . . . . . . . . . 12 (𝑋 / π) ∈ ℂ
268267, 169, 44divcan2i 11885 . . . . . . . . . . 11 (2 · ((𝑋 / π) / 2)) = (𝑋 / π)
269266, 268eqtr2i 2753 . . . . . . . . . 10 (𝑋 / π) = (2 · (𝑋 / 𝑇))
2702a1i 11 . . . . . . . . . . 11 ((𝑋 / 𝑇) ∈ ℤ → 2 ∈ ℤ)
271 id 22 . . . . . . . . . . 11 ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / 𝑇) ∈ ℤ)
272270, 271zmulcld 12604 . . . . . . . . . 10 ((𝑋 / 𝑇) ∈ ℤ → (2 · (𝑋 / 𝑇)) ∈ ℤ)
273269, 272eqeltrid 2832 . . . . . . . . 9 ((𝑋 / 𝑇) ∈ ℤ → (𝑋 / π) ∈ ℤ)
27465, 273sylbi 217 . . . . . . . 8 ((𝑋 mod 𝑇) = 0 → (𝑋 / π) ∈ ℤ)
275274, 7sylibr 234 . . . . . . 7 ((𝑋 mod 𝑇) = 0 → (𝑋 mod π) = 0)
276275iftrued 4486 . . . . . 6 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = 0)
277172, 276eqtr2id 2777 . . . . 5 ((𝑋 mod 𝑇) = 0 → 0 = 𝑌)
278253, 258, 2773eqtrrd 2769 . . . 4 ((𝑋 mod 𝑇) = 0 → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
279278adantl 481 . . 3 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
280128a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ*)
28159rexri 11192 . . . . . 6 𝑇 ∈ ℝ*
282281a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑇 ∈ ℝ*)
283139a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ)
284 pm4.56 990 . . . . . . . 8 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) ↔ ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
285284biimpi 216 . . . . . . 7 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
286 olc 868 . . . . . . . . 9 ((𝑋 mod 𝑇) = 0 → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
287286adantl 481 . . . . . . . 8 (((𝑋 mod 𝑇) ≤ π ∧ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
288127a1i 11 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 ∈ ℝ*)
289128a1i 11 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ*)
290140a1i 11 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ*)
291 0red 11137 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → 0 ∈ ℝ)
292139a1i 11 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ∈ ℝ)
293 modge0 13801 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → 0 ≤ (𝑋 mod 𝑇))
2944, 63, 293mp2an 692 . . . . . . . . . . . . 13 0 ≤ (𝑋 mod 𝑇)
295294a1i 11 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → 0 ≤ (𝑋 mod 𝑇))
296 neqne 2933 . . . . . . . . . . . 12 (¬ (𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≠ 0)
297291, 292, 295, 296leneltd 11288 . . . . . . . . . . 11 (¬ (𝑋 mod 𝑇) = 0 → 0 < (𝑋 mod 𝑇))
298297adantl 481 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → 0 < (𝑋 mod 𝑇))
299 simpl 482 . . . . . . . . . 10 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π)
300288, 289, 290, 298, 299eliocd 45492 . . . . . . . . 9 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (0(,]π))
301300orcd 873 . . . . . . . 8 (((𝑋 mod 𝑇) ≤ π ∧ ¬ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
302287, 301pm2.61dan 812 . . . . . . 7 ((𝑋 mod 𝑇) ≤ π → ((𝑋 mod 𝑇) ∈ (0(,]π) ∨ (𝑋 mod 𝑇) = 0))
303285, 302nsyl 140 . . . . . 6 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ (𝑋 mod 𝑇) ≤ π)
30433a1i 11 . . . . . . 7 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ)
305304, 283ltnled 11281 . . . . . 6 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π))
306303, 305mpbird 257 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π < (𝑋 mod 𝑇))
307 modlt 13802 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) < 𝑇)
3084, 63, 307mp2an 692 . . . . . 6 (𝑋 mod 𝑇) < 𝑇
309308a1i 11 . . . . 5 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) < 𝑇)
310280, 282, 283, 306, 309eliood 45483 . . . 4 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (π(,)𝑇))
311127a1i 11 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 0 ∈ ℝ*)
31233a1i 11 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π ∈ ℝ)
313140a1i 11 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ*)
314 ioogtlb 45480 . . . . . . . . . 10 ((π ∈ ℝ*𝑇 ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (π(,)𝑇)) → π < (𝑋 mod 𝑇))
315128, 281, 314mp3an12 1453 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π < (𝑋 mod 𝑇))
316311, 312, 313, 315gtnelioc 45476 . . . . . . . 8 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ∈ (0(,]π))
317316iffalsed 4489 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = -1)
318139a1i 11 . . . . . . . . . 10 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ)
319312, 318, 315ltnsymd 11283 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) < π)
320319iffalsed 4489 . . . . . . . 8 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) < π, 1, -1) = -1)
321156, 320eqtrid 2776 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝐹𝑋) = -1)
322317, 321oveq12d 7371 . . . . . 6 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) = (-1 + -1))
323322oveq1d 7368 . . . . 5 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = ((-1 + -1) / 2))
324 df-2 12209 . . . . . . . . . 10 2 = (1 + 1)
325324negeqi 11374 . . . . . . . . 9 -2 = -(1 + 1)
326185, 185negdii 11466 . . . . . . . . 9 -(1 + 1) = (-1 + -1)
327325, 326eqtr2i 2753 . . . . . . . 8 (-1 + -1) = -2
328327oveq1i 7363 . . . . . . 7 ((-1 + -1) / 2) = (-2 / 2)
329 divneg 11834 . . . . . . . 8 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(2 / 2) = (-2 / 2))
330169, 169, 44, 329mp3an 1463 . . . . . . 7 -(2 / 2) = (-2 / 2)
331238negeqi 11374 . . . . . . 7 -(2 / 2) = -1
332328, 330, 3313eqtr2i 2758 . . . . . 6 ((-1 + -1) / 2) = -1
333332a1i 11 . . . . 5 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((-1 + -1) / 2) = -1)
334172a1i 11 . . . . . 6 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋)))
335312, 318ltnled 11281 . . . . . . . . 9 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (π < (𝑋 mod 𝑇) ↔ ¬ (𝑋 mod 𝑇) ≤ π))
336315, 335mpbid 232 . . . . . . . 8 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ≤ π)
337248, 112eqbrtrdi 5134 . . . . . . . . . 10 ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) ≤ π)
338337adantl 481 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π)
339126orcanai 1004 . . . . . . . . . 10 (((𝑋 mod π) = 0 ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) = π)
340339, 144syl 17 . . . . . . . . 9 (((𝑋 mod π) = 0 ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ≤ π)
341338, 340pm2.61dan 812 . . . . . . . 8 ((𝑋 mod π) = 0 → (𝑋 mod 𝑇) ≤ π)
342336, 341nsyl 140 . . . . . . 7 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod π) = 0)
343342iffalsed 4489 . . . . . 6 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod π) = 0, 0, (𝐹𝑋)) = (𝐹𝑋))
344334, 343, 3213eqtrrd 2769 . . . . 5 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -1 = 𝑌)
345323, 333, 3443eqtrrd 2769 . . . 4 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
346310, 345syl 17 . . 3 ((¬ (𝑋 mod 𝑇) ∈ (0(,]π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
347279, 346pm2.61dan 812 . 2 (¬ (𝑋 mod 𝑇) ∈ (0(,]π) → 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
348245, 347pm2.61i 182 1 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  cz 12489  +crp 12911  (,)cioo 13266  (,]cioc 13267  cfl 13712   mod cmo 13791  πcpi 15991  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  fouriersw  46216
  Copyright terms: Public domain W3C validator