MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexmul Structured version   Visualization version   GIF version

Theorem rexmul 13287
Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))

Proof of Theorem rexmul
StepHypRef Expression
1 renepnf 11283 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
21adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ +∞)
32necon2bi 2962 . . . . . . . . 9 (𝐴 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
43adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5 renemnf 11284 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
65adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ -∞)
76necon2bi 2962 . . . . . . . . 9 (𝐴 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
87adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
94, 8jaoi 857 . . . . . . 7 (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
10 renepnf 11283 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
1110adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞)
1211necon2bi 2962 . . . . . . . . 9 (𝐵 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1312adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
14 renemnf 11284 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
1514adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
1615necon2bi 2962 . . . . . . . . 9 (𝐵 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1716adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1813, 17jaoi 857 . . . . . . 7 (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
199, 18jaoi 857 . . . . . 6 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2019con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
2120iffalsed 4511 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
227adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
233adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2422, 23jaoi 857 . . . . . . 7 (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2516adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2612adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2725, 26jaoi 857 . . . . . . 7 (((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2824, 27jaoi 857 . . . . . 6 ((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2928con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
3029iffalsed 4511 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵))
3121, 30eqtrd 2770 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵))
3231ifeq2d 4521 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
33 rexr 11281 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
34 rexr 11281 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
35 xmulval 13241 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
3633, 34, 35syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
37 ifid 4541 . . 3 if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = (𝐴 · 𝐵)
38 oveq1 7412 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
39 mul02lem2 11412 . . . . . . 7 (𝐵 ∈ ℝ → (0 · 𝐵) = 0)
4039adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
4138, 40sylan9eqr 2792 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
42 oveq2 7413 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
43 recn 11219 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4443mul01d 11434 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
4544adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) = 0)
4642, 45sylan9eqr 2792 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
4741, 46jaodan 959 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 · 𝐵) = 0)
4847ifeq1da 4532 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
4937, 48eqtr3id 2784 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
5032, 36, 493eqtr4d 2780 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  ifcif 4500   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129   · cmul 11134  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268   < clt 11269   ·e cxmu 13127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-xmul 13130
This theorem is referenced by:  xmulrid  13295  xmulgt0  13299  xmulasslem3  13302  xlemul1a  13304  xlemul1  13306  xadddilem  13310  nmoix  24668  nmoi2  24669  metnrmlem3  24801  nmoleub2lem  25065  nn0xmulclb  32748  hashxpe  32786  xrecex  32894  rexdiv  32900  pnfinf  33181  xrge0slmod  33363  fldextrspundgdvdslem  33721  fldextrspundgdvds  33722  fldext2rspun  33723  fldext2chn  33762  constrext2chnlem  33784  esumcst  34094  omssubadd  34332
  Copyright terms: Public domain W3C validator