MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexmul Structured version   Visualization version   GIF version

Theorem rexmul 13172
Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))

Proof of Theorem rexmul
StepHypRef Expression
1 renepnf 11167 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
21adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ +∞)
32necon2bi 2959 . . . . . . . . 9 (𝐴 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
43adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5 renemnf 11168 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
65adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ -∞)
76necon2bi 2959 . . . . . . . . 9 (𝐴 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
87adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
94, 8jaoi 857 . . . . . . 7 (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
10 renepnf 11167 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
1110adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞)
1211necon2bi 2959 . . . . . . . . 9 (𝐵 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1312adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
14 renemnf 11168 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
1514adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
1615necon2bi 2959 . . . . . . . . 9 (𝐵 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1716adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1813, 17jaoi 857 . . . . . . 7 (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
199, 18jaoi 857 . . . . . 6 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2019con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
2120iffalsed 4485 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
227adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
233adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2422, 23jaoi 857 . . . . . . 7 (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2516adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2612adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2725, 26jaoi 857 . . . . . . 7 (((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2824, 27jaoi 857 . . . . . 6 ((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2928con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
3029iffalsed 4485 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵))
3121, 30eqtrd 2768 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵))
3231ifeq2d 4495 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
33 rexr 11165 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
34 rexr 11165 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
35 xmulval 13126 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
3633, 34, 35syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
37 ifid 4515 . . 3 if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = (𝐴 · 𝐵)
38 oveq1 7359 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
39 mul02lem2 11297 . . . . . . 7 (𝐵 ∈ ℝ → (0 · 𝐵) = 0)
4039adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
4138, 40sylan9eqr 2790 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
42 oveq2 7360 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
43 recn 11103 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4443mul01d 11319 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
4544adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) = 0)
4642, 45sylan9eqr 2790 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
4741, 46jaodan 959 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 · 𝐵) = 0)
4847ifeq1da 4506 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
4937, 48eqtr3id 2782 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
5032, 36, 493eqtr4d 2778 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  ifcif 4474   class class class wbr 5093  (class class class)co 7352  cr 11012  0cc0 11013   · cmul 11018  +∞cpnf 11150  -∞cmnf 11151  *cxr 11152   < clt 11153   ·e cxmu 13012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-xmul 13015
This theorem is referenced by:  xmulrid  13180  xmulgt0  13184  xmulasslem3  13187  xlemul1a  13189  xlemul1  13191  xadddilem  13195  nmoix  24645  nmoi2  24646  metnrmlem3  24778  nmoleub2lem  25042  nn0xmulclb  32758  hashxpe  32794  xrecex  32907  rexdiv  32913  pnfinf  33159  xrge0slmod  33320  fldextrspundgdvdslem  33714  fldextrspundgdvds  33715  fldext2rspun  33716  fldext2chn  33762  constrext2chnlem  33784  esumcst  34097  omssubadd  34334
  Copyright terms: Public domain W3C validator