Proof of Theorem rexmul
Step | Hyp | Ref
| Expression |
1 | | renepnf 10954 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
2 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ +∞) |
3 | 2 | necon2bi 2973 |
. . . . . . . . 9
⊢ (𝐴 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
4 | 3 | adantl 481 |
. . . . . . . 8
⊢ ((0 <
𝐵 ∧ 𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
5 | | renemnf 10955 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
6 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ -∞) |
7 | 6 | necon2bi 2973 |
. . . . . . . . 9
⊢ (𝐴 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
9 | 4, 8 | jaoi 853 |
. . . . . . 7
⊢ (((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
10 | | renepnf 10954 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ +∞) |
11 | 10 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞) |
12 | 11 | necon2bi 2973 |
. . . . . . . . 9
⊢ (𝐵 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
13 | 12 | adantl 481 |
. . . . . . . 8
⊢ ((0 <
𝐴 ∧ 𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
14 | | renemnf 10955 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ -∞) |
15 | 14 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞) |
16 | 15 | necon2bi 2973 |
. . . . . . . . 9
⊢ (𝐵 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
17 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
18 | 13, 17 | jaoi 853 |
. . . . . . 7
⊢ (((0 <
𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
19 | 9, 18 | jaoi 853 |
. . . . . 6
⊢ ((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
20 | 19 | con2i 139 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) |
21 | 20 | iffalsed 4467 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) |
22 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((0 <
𝐵 ∧ 𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
23 | 3 | adantl 481 |
. . . . . . . 8
⊢ ((𝐵 < 0 ∧ 𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
24 | 22, 23 | jaoi 853 |
. . . . . . 7
⊢ (((0 <
𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
25 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((0 <
𝐴 ∧ 𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
26 | 12 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 < 0 ∧ 𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
27 | 25, 26 | jaoi 853 |
. . . . . . 7
⊢ (((0 <
𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
28 | 24, 27 | jaoi 853 |
. . . . . 6
⊢ ((((0
< 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
29 | 28 | con2i 139 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
30 | 29 | iffalsed 4467 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0
< 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
31 | 21, 30 | eqtrd 2778 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵)) |
32 | 31 | ifeq2d 4476 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵))) |
33 | | rexr 10952 |
. . 3
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
34 | | rexr 10952 |
. . 3
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
35 | | xmulval 12888 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
36 | 33, 34, 35 | syl2an 595 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
37 | | ifid 4496 |
. . 3
⊢ if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = (𝐴 · 𝐵) |
38 | | oveq1 7262 |
. . . . . 6
⊢ (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵)) |
39 | | mul02lem2 11082 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → (0
· 𝐵) =
0) |
40 | 39 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0
· 𝐵) =
0) |
41 | 38, 40 | sylan9eqr 2801 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0) |
42 | | oveq2 7263 |
. . . . . 6
⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) |
43 | | recn 10892 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
44 | 43 | mul01d 11104 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 · 0) =
0) |
45 | 44 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) =
0) |
46 | 42, 45 | sylan9eqr 2801 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0) |
47 | 41, 46 | jaodan 954 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 · 𝐵) = 0) |
48 | 47 | ifeq1da 4487 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵))) |
49 | 37, 48 | eqtr3id 2793 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵))) |
50 | 32, 36, 49 | 3eqtr4d 2788 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵)) |