MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexmul Structured version   Visualization version   GIF version

Theorem rexmul 13333
Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))

Proof of Theorem rexmul
StepHypRef Expression
1 renepnf 11338 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
21adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ +∞)
32necon2bi 2977 . . . . . . . . 9 (𝐴 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
43adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5 renemnf 11339 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
65adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ -∞)
76necon2bi 2977 . . . . . . . . 9 (𝐴 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
87adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
94, 8jaoi 856 . . . . . . 7 (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
10 renepnf 11338 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
1110adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞)
1211necon2bi 2977 . . . . . . . . 9 (𝐵 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1312adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
14 renemnf 11339 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
1514adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
1615necon2bi 2977 . . . . . . . . 9 (𝐵 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1716adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1813, 17jaoi 856 . . . . . . 7 (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
199, 18jaoi 856 . . . . . 6 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2019con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
2120iffalsed 4559 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
227adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
233adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2422, 23jaoi 856 . . . . . . 7 (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2516adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2612adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2725, 26jaoi 856 . . . . . . 7 (((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2824, 27jaoi 856 . . . . . 6 ((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2928con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
3029iffalsed 4559 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵))
3121, 30eqtrd 2780 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵))
3231ifeq2d 4568 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
33 rexr 11336 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
34 rexr 11336 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
35 xmulval 13287 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
3633, 34, 35syl2an 595 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
37 ifid 4588 . . 3 if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = (𝐴 · 𝐵)
38 oveq1 7455 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
39 mul02lem2 11467 . . . . . . 7 (𝐵 ∈ ℝ → (0 · 𝐵) = 0)
4039adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
4138, 40sylan9eqr 2802 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
42 oveq2 7456 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
43 recn 11274 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4443mul01d 11489 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
4544adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) = 0)
4642, 45sylan9eqr 2802 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
4741, 46jaodan 958 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 · 𝐵) = 0)
4847ifeq1da 4579 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
4937, 48eqtr3id 2794 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
5032, 36, 493eqtr4d 2790 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324   ·e cxmu 13174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-xmul 13177
This theorem is referenced by:  xmulrid  13341  xmulgt0  13345  xmulasslem3  13348  xlemul1a  13350  xlemul1  13352  xadddilem  13356  nmoix  24771  nmoi2  24772  metnrmlem3  24902  nmoleub2lem  25166  nn0xmulclb  32778  hashxpe  32814  xrecex  32884  rexdiv  32890  pnfinf  33163  xrge0slmod  33341  fldext2chn  33719  esumcst  34027  omssubadd  34265
  Copyright terms: Public domain W3C validator