MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexmul Structured version   Visualization version   GIF version

Theorem rexmul 13167
Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))

Proof of Theorem rexmul
StepHypRef Expression
1 renepnf 11157 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
21adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ +∞)
32necon2bi 2958 . . . . . . . . 9 (𝐴 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
43adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5 renemnf 11158 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
65adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≠ -∞)
76necon2bi 2958 . . . . . . . . 9 (𝐴 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
87adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
94, 8jaoi 857 . . . . . . 7 (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
10 renepnf 11157 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
1110adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞)
1211necon2bi 2958 . . . . . . . . 9 (𝐵 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1312adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
14 renemnf 11158 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
1514adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
1615necon2bi 2958 . . . . . . . . 9 (𝐵 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1716adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1813, 17jaoi 857 . . . . . . 7 (((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
199, 18jaoi 857 . . . . . 6 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2019con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
2120iffalsed 4486 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
227adantl 481 . . . . . . . 8 ((0 < 𝐵𝐴 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
233adantl 481 . . . . . . . 8 ((𝐵 < 0 ∧ 𝐴 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2422, 23jaoi 857 . . . . . . 7 (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2516adantl 481 . . . . . . . 8 ((0 < 𝐴𝐵 = -∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2612adantl 481 . . . . . . . 8 ((𝐴 < 0 ∧ 𝐵 = +∞) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2725, 26jaoi 857 . . . . . . 7 (((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2824, 27jaoi 857 . . . . . 6 ((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2928con2i 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
3029iffalsed 4486 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵))
3121, 30eqtrd 2766 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵))
3231ifeq2d 4496 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
33 rexr 11155 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
34 rexr 11155 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
35 xmulval 13121 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
3633, 34, 35syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
37 ifid 4516 . . 3 if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = (𝐴 · 𝐵)
38 oveq1 7353 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
39 mul02lem2 11287 . . . . . . 7 (𝐵 ∈ ℝ → (0 · 𝐵) = 0)
4039adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
4138, 40sylan9eqr 2788 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
42 oveq2 7354 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
43 recn 11093 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4443mul01d 11309 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
4544adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) = 0)
4642, 45sylan9eqr 2788 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
4741, 46jaodan 959 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 · 𝐵) = 0)
4847ifeq1da 4507 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐴 = 0 ∨ 𝐵 = 0), (𝐴 · 𝐵), (𝐴 · 𝐵)) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
4937, 48eqtr3id 2780 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, (𝐴 · 𝐵)))
5032, 36, 493eqtr4d 2776 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  ifcif 4475   class class class wbr 5091  (class class class)co 7346  cr 11002  0cc0 11003   · cmul 11008  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143   ·e cxmu 13007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-xmul 13010
This theorem is referenced by:  xmulrid  13175  xmulgt0  13179  xmulasslem3  13182  xlemul1a  13184  xlemul1  13186  xadddilem  13190  nmoix  24642  nmoi2  24643  metnrmlem3  24775  nmoleub2lem  25039  nn0xmulclb  32749  hashxpe  32784  xrecex  32895  rexdiv  32901  pnfinf  33147  xrge0slmod  33308  fldextrspundgdvdslem  33688  fldextrspundgdvds  33689  fldext2rspun  33690  fldext2chn  33736  constrext2chnlem  33758  esumcst  34071  omssubadd  34308
  Copyright terms: Public domain W3C validator