Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31id Structured version   Visualization version   GIF version

Theorem cdleme31id 36468
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 18-Apr-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme31id ((𝑋𝐵𝑃 = 𝑄) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem cdleme31id
StepHypRef Expression
1 simpl 476 . . 3 ((𝑃𝑄 ∧ ¬ 𝑋 𝑊) → 𝑃𝑄)
21necon2bi 3029 . 2 (𝑃 = 𝑄 → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
3 cdleme31fv2.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
43cdleme31fv2 36467 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
52, 4sylan2 586 1 ((𝑋𝐵𝑃 = 𝑄) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  ifcif 4308   class class class wbr 4875  cmpt 4954  cfv 6127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135
This theorem is referenced by:  cdleme32fvaw  36513  cdleme42keg  36560  cdleme42mgN  36562  cdleme17d4  36571  cdleme48fvg  36574  cdleme50trn3  36627  cdlemg1idlemN  36646  cdlemg2idN  36670
  Copyright terms: Public domain W3C validator