Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31id Structured version   Visualization version   GIF version

Theorem cdleme31id 39253
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 18-Apr-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme31id ((𝑋𝐵𝑃 = 𝑄) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem cdleme31id
StepHypRef Expression
1 simpl 483 . . 3 ((𝑃𝑄 ∧ ¬ 𝑋 𝑊) → 𝑃𝑄)
21necon2bi 2971 . 2 (𝑃 = 𝑄 → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
3 cdleme31fv2.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
43cdleme31fv2 39252 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
52, 4sylan2 593 1 ((𝑋𝐵𝑃 = 𝑄) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  ifcif 4527   class class class wbr 5147  cmpt 5230  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548
This theorem is referenced by:  cdleme32fvaw  39298  cdleme42keg  39345  cdleme42mgN  39347  cdleme17d4  39356  cdleme48fvg  39359  cdleme50trn3  39412  cdlemg1idlemN  39431  cdlemg2idN  39455
  Copyright terms: Public domain W3C validator