MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem5 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem5 27544
Description: Lemma for pntrlog2bnd 27547. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
Assertion
Ref Expression
pntrlog2bndlem5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦   𝐵,𝑛,𝑥,𝑦   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem5
StepHypRef Expression
1 elioore 13392 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 13012 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11236 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13422 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11383 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13090 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bnd.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 27526 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1312ffvelcdmi 7073 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1410, 13syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1514recnd 11263 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1615abscld 15455 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1716recnd 11263 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℂ)
1810relogcld 26584 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1918recnd 11263 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2017, 19mulcld 11255 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
21 2cnd 12318 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
222, 8rplogcld 26590 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2322rpne0d 13056 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
2421, 19, 23divcld 12017 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
25 fzfid 13991 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2610adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
27 elfznn 13570 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2827adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2928nnrpd 13049 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 13068 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3112ffvelcdmi 7073 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 11263 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 15455 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 26584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
36 1red 11236 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
3735, 36readdcld 11264 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℝ)
3834, 37remulcld 11265 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
3938recnd 11263 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4025, 39fsumcl 15749 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4124, 40mulcld 11255 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℂ)
4220, 41subcld 11594 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℂ)
4334recnd 11263 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4425, 43fsumcl 15749 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4524, 44mulcld 11255 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℂ)
462recnd 11263 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
4710rpne0d 13056 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
4842, 45, 46, 47divdird 12055 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)))
4916, 18remulcld 11265 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
5049recnd 11263 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
5150, 41, 45subsubd 11622 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5224, 40, 44subdid 11693 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5325, 39, 43fsumsub 15804 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))
5437recnd 11263 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℂ)
55 1cnd 11230 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
5643, 54, 55subdid 11693 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)))
5735recnd 11263 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
5857, 55pncand 11595 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘𝑛) + 1) − 1) = (log‘𝑛))
5958oveq2d 7421 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6043mulridd 11252 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1) = (abs‘(𝑅‘(𝑥 / 𝑛))))
6160oveq2d 7421 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))))
6256, 59, 613eqtr3rd 2779 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6362sumeq2dv 15718 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6453, 63eqtr3d 2772 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6564oveq2d 7421 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6652, 65eqtr3d 2772 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6766oveq2d 7421 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6851, 67eqtr3d 2772 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6968oveq1d 7420 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7048, 69eqtr3d 2772 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7170mpteq2dva 5214 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)))
72 2re 12314 . . . . . . . 8 2 ∈ ℝ
7372a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
7473, 22rerpdivcld 13082 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
7525, 38fsumrecl 15750 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
7674, 75remulcld 11265 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℝ)
7749, 76resubcld 11665 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℝ)
7877, 10rerpdivcld 13082 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ∈ ℝ)
7925, 34fsumrecl 15750 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
8074, 79remulcld 11265 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
8180, 10rerpdivcld 13082 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
82 1red 11236 . . . 4 (𝜑 → 1 ∈ ℝ)
83 pntsval.1 . . . . . 6 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
84 pntrlog2bnd.t . . . . . 6 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
8583, 11, 84pntrlog2bndlem4 27543 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
8685a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1))
8728nnred 12255 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
88 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ)
89 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
9089relogcld 26584 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (log‘𝑎) ∈ ℝ)
9188, 90remulcld 11265 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (𝑎 · (log‘𝑎)) ∈ ℝ)
92 0red 11238 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ ¬ 𝑎 ∈ ℝ+) → 0 ∈ ℝ)
9391, 92ifclda 4536 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) ∈ ℝ)
9484, 93fmpti 7102 . . . . . . . . . . . 12 𝑇:ℝ⟶ℝ
9594ffvelcdmi 7073 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (𝑇𝑛) ∈ ℝ)
9687, 95syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℝ)
9787, 36resubcld 11665 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
9894ffvelcdmi 7073 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℝ)
10096, 99resubcld 11665 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℝ)
10134, 100remulcld 11265 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10225, 101fsumrecl 15750 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10374, 102remulcld 11265 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℝ)
10449, 103resubcld 11665 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
105104, 10rerpdivcld 13082 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥) ∈ ℝ)
106 2rp 13013 . . . . . . . . . . 11 2 ∈ ℝ+
107106a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
108107rpge0d 13055 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
10973, 22, 108divge0d 13091 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 / (log‘𝑥)))
11033absge0d 15463 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
11129adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ+)
112111rpcnd 13053 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℂ)
11357adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℂ)
114112, 113mulcld 11255 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘𝑛)) ∈ ℂ)
115 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 < 𝑛)
116 1re 11235 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
117111rpred 13051 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ)
118 difrp 13047 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
119116, 117, 118sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
120115, 119mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℝ+)
121120relogcld 26584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℝ)
122121recnd 11263 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℂ)
123112, 122mulcld 11255 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘(𝑛 − 1))) ∈ ℂ)
124114, 123, 122subsubd 11622 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
125 rpre 13017 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
126 eleq1 2822 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 ∈ ℝ+𝑛 ∈ ℝ+))
127 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛𝑎 = 𝑛)
128 fveq2 6876 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
129127, 128oveq12d 7423 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛)))
130126, 129ifbieq1d 4525 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
131 ovex 7438 . . . . . . . . . . . . . . . . . . 19 (𝑛 · (log‘𝑛)) ∈ V
132 c0ex 11229 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
133131, 132ifex 4551 . . . . . . . . . . . . . . . . . 18 if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) ∈ V
134130, 84, 133fvmpt 6986 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
135125, 134syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
136 iftrue 4506 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) = (𝑛 · (log‘𝑛)))
137135, 136eqtrd 2770 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
138111, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
139 rpre 13017 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ+ → (𝑛 − 1) ∈ ℝ)
140 eleq1 2822 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 ∈ ℝ+ ↔ (𝑛 − 1) ∈ ℝ+))
141 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → 𝑎 = (𝑛 − 1))
142 fveq2 6876 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → (log‘𝑎) = (log‘(𝑛 − 1)))
143141, 142oveq12d 7423 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 · (log‘𝑎)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
144140, 143ifbieq1d 4525 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑛 − 1) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
145 ovex 7438 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) · (log‘(𝑛 − 1))) ∈ V
146145, 132ifex 4551 . . . . . . . . . . . . . . . . . . 19 if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) ∈ V
147144, 84, 146fvmpt 6986 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
148139, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
149 iftrue 4506 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
150148, 149eqtrd 2770 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
151120, 150syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
152 1cnd 11230 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℂ)
153112, 152, 122subdird 11694 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · (log‘(𝑛 − 1))) = ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))))
154122mullidd 11253 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · (log‘(𝑛 − 1))) = (log‘(𝑛 − 1)))
155154oveq2d 7421 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
156151, 153, 1553eqtrd 2774 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
157138, 156oveq12d 7423 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))))
158112, 113, 122subdid 11693 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))))
159158oveq1d 7420 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
160124, 157, 1593eqtr4d 2780 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
161111relogcld 26584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℝ)
162161, 121resubcld 11665 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℝ)
163162recnd 11263 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℂ)
164112, 152, 163subdird 11694 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))))
165163mullidd 11253 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
166165oveq2d 7421 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))))
167117, 162remulcld 11265 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℝ)
168167recnd 11263 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℂ)
169168, 113, 122subsub3d 11624 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
170164, 166, 1693eqtrd 2774 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
171112, 152npcand 11598 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) + 1) = 𝑛)
172171fveq2d 6880 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
173172oveq1d 7420 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
174 logdifbnd 26956 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
175120, 174syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
176173, 175eqbrtrrd 5143 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
177 1red 11236 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℝ)
178162, 177, 120lemuldiv2d 13101 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1 ↔ ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1))))
179176, 178mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1)
180170, 179eqbrtrrd 5143 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1)
181167, 121readdcld 11264 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ∈ ℝ)
182181, 161, 177lesubadd2d 11836 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1 ↔ ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1)))
183180, 182mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
184160, 183eqbrtrd 5141 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
185 fveq2 6876 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇𝑛) = (𝑇‘1))
186 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → 𝑎 = 1)
187186, 3eqeltrdi 2842 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → 𝑎 ∈ ℝ+)
188187iftrued 4508 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = (𝑎 · (log‘𝑎)))
189 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 1 → (log‘𝑎) = (log‘1))
190 log1 26546 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘1) = 0
191189, 190eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → (log‘𝑎) = 0)
192186, 191oveq12d 7423 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = (1 · 0))
193 ax-1cn 11187 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
194193mul01i 11425 . . . . . . . . . . . . . . . . . . . . 21 (1 · 0) = 0
195192, 194eqtrdi 2786 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = 0)
196188, 195eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
197196, 84, 132fvmpt 6986 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → (𝑇‘1) = 0)
198116, 197ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘1) = 0
199185, 198eqtrdi 2786 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇𝑛) = 0)
200 oveq1 7412 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
201 1m1e0 12312 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
202200, 201eqtrdi 2786 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 − 1) = 0)
203202fveq2d 6880 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = (𝑇‘0))
204 0re 11237 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
205 rpne0 13025 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+𝑎 ≠ 0)
206205necon2bi 2962 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → ¬ 𝑎 ∈ ℝ+)
207206iffalsed 4511 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
208207, 84, 132fvmpt 6986 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (𝑇‘0) = 0)
209204, 208ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘0) = 0
210203, 209eqtrdi 2786 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = 0)
211199, 210oveq12d 7423 . . . . . . . . . . . . . . 15 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = (0 − 0))
212 0m0e0 12360 . . . . . . . . . . . . . . 15 (0 − 0) = 0
213211, 212eqtrdi 2786 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
214213eqcoms 2743 . . . . . . . . . . . . 13 (1 = 𝑛 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
215214adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
216 0red 11238 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ∈ ℝ)
21728nnge1d 12288 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
21887, 217logge0d 26591 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
21935lep1d 12173 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ≤ ((log‘𝑛) + 1))
220216, 35, 37, 218, 219letrd 11392 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘𝑛) + 1))
221220adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → 0 ≤ ((log‘𝑛) + 1))
222215, 221eqbrtrd 5141 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
223 elfzle1 13544 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 1 ≤ 𝑛)
224223adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
22536, 87leloed 11378 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 ≤ 𝑛 ↔ (1 < 𝑛 ∨ 1 = 𝑛)))
226224, 225mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 < 𝑛 ∨ 1 = 𝑛))
227184, 222, 226mpjaodan 960 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
228100, 37, 34, 110, 227lemul2ad 12182 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
22925, 101, 38, 228fsumle 15815 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
230102, 75, 74, 109, 229lemul2ad 12182 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))))
231103, 76, 49, 230lesub2dd 11854 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ≤ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
23277, 104, 10, 231lediv1dd 13109 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
233232adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
23482, 86, 105, 78, 233lo1le 15668 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥)) ∈ ≤𝑂(1))
235106a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
236 pntrlog2bndlem5.1 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
237235, 236rpmulcld 13067 . . . . . . 7 (𝜑 → (2 · 𝐵) ∈ ℝ+)
238237rpred 13051 . . . . . 6 (𝜑 → (2 · 𝐵) ∈ ℝ)
239238adantr 480 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ)
2405, 22rerpdivcld 13082 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
2415, 240readdcld 11264 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℝ)
242 ioossre 13424 . . . . . 6 (1(,)+∞) ⊆ ℝ
243 lo1const 15637 . . . . . 6 (((1(,)+∞) ⊆ ℝ ∧ (2 · 𝐵) ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
244242, 238, 243sylancr 587 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
245 lo1const 15637 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
246242, 82, 245sylancr 587 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
247 divlogrlim 26596 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
248 rlimo1 15633 . . . . . . . 8 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
249247, 248mp1i 13 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
250240, 249o1lo1d 15555 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ ≤𝑂(1))
2515, 240, 246, 250lo1add 15643 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 / (log‘𝑥)))) ∈ ≤𝑂(1))
252237adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ+)
253252rpge0d 13055 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 · 𝐵))
254239, 241, 244, 251, 253lo1mul 15644 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((2 · 𝐵) · (1 + (1 / (log‘𝑥))))) ∈ ≤𝑂(1))
255239, 241remulcld 11265 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) ∈ ℝ)
25679, 10rerpdivcld 13082 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
25718, 5readdcld 11264 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
258236adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ+)
259258rpred 13051 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ)
260257, 259remulcld 11265 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) · 𝐵) ∈ ℝ)
26128nnrecred 12291 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
26225, 261fsumrecl 15750 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
263262, 259remulcld 11265 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ∈ ℝ)
26434, 26rerpdivcld 13082 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
265259adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℝ)
266261, 265remulcld 11265 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 / 𝑛) · 𝐵) ∈ ℝ)
26730rpcnd 13053 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
26830rpne0d 13056 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
26933, 267, 268absdivd 15474 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))))
2702adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
271270, 28nndivred 12294 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
27230rpge0d 13055 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
273271, 272absidd 15441 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
274273oveq2d 7421 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
275269, 274eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
27646adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
27787recnd 11263 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
27847adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ≠ 0)
27928nnne0d 12290 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
28043, 276, 277, 278, 279divdiv2d 12049 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥))
28143, 277, 276, 278div23d 12054 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
282275, 280, 2813eqtrd 2774 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
283 fveq2 6876 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (𝑅𝑦) = (𝑅‘(𝑥 / 𝑛)))
284 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
285283, 284oveq12d 7423 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → ((𝑅𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))
286285fveq2d 6880 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
287286breq1d 5129 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵))
288 pntrlog2bndlem5.2 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
289288ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
290287, 289, 30rspcdva 3602 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)
291282, 290eqbrtrrd 5143 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵)
292264, 265, 29lemuldivd 13100 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵 ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛)))
293291, 292mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛))
294265recnd 11263 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℂ)
295294, 277, 279divrec2d 12021 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐵 / 𝑛) = ((1 / 𝑛) · 𝐵))
296293, 295breqtrd 5145 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ ((1 / 𝑛) · 𝐵))
29725, 264, 266, 296fsumle 15815 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
29825, 46, 43, 47fsumdivc 15802 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥))
299258rpcnd 13053 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℂ)
300261recnd 11263 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
30125, 299, 300fsummulc1 15801 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
302297, 298, 3013brtr4d 5151 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵))
303258rpge0d 13055 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵)
304 harmonicubnd 26972 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
3052, 9, 304syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
306262, 257, 259, 303, 305lemul1ad 12181 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ≤ (((log‘𝑥) + 1) · 𝐵))
307256, 263, 260, 302, 306letrd 11392 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (((log‘𝑥) + 1) · 𝐵))
308256, 260, 74, 109, 307lemul2ad 12182 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)) ≤ ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
30924, 44, 46, 47divassd 12052 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)))
310241recnd 11263 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℂ)
31121, 299, 310mul32d 11445 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵))
312 1cnd 11230 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
31319, 312, 19, 23divdird 12055 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) / (log‘𝑥)) = (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))))
31419, 23dividd 12015 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
315314oveq1d 7420 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))) = (1 + (1 / (log‘𝑥))))
316313, 315eqtr2d 2771 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) = (((log‘𝑥) + 1) / (log‘𝑥)))
317316oveq2d 7421 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
31819, 312addcld 11254 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
31921, 19, 318, 23div32d 12040 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
320317, 319eqtr4d 2773 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)))
321320oveq1d 7420 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵) = (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵))
32224, 318, 299mulassd 11258 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
323311, 321, 3223eqtrd 2774 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
324308, 309, 3233brtr4d 5151 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
325324adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
32682, 254, 255, 81, 325lo1le 15668 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
32778, 81, 234, 326lo1add 15643 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) ∈ ≤𝑂(1))
32871, 327eqeltrrd 2835 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  +crp 13008  (,)cioo 13362  ...cfz 13524  cfl 13807  abscabs 15253  𝑟 crli 15501  𝑂(1)co1 15502  ≤𝑂(1)clo1 15503  Σcsu 15702  logclog 26515  Λcvma 27054  ψcchp 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-o1 15506  df-lo1 15507  df-sum 15703  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-tan 16087  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-ulm 26338  df-log 26517  df-cxp 26518  df-atan 26829  df-em 26955  df-cht 27059  df-vma 27060  df-chp 27061  df-ppi 27062  df-mu 27063
This theorem is referenced by:  pntrlog2bndlem6  27546
  Copyright terms: Public domain W3C validator