MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem5 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem5 27559
Description: Lemma for pntrlog2bnd 27562. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
Assertion
Ref Expression
pntrlog2bndlem5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦   𝐵,𝑛,𝑥,𝑦   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem5
StepHypRef Expression
1 elioore 13389 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 13013 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11247 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13418 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 493 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11394 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13090 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bnd.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 27541 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1312ffvelcdmi 7092 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1410, 13syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1514recnd 11274 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1615abscld 15419 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1716recnd 11274 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℂ)
1810relogcld 26602 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1918recnd 11274 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2017, 19mulcld 11266 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
21 2cnd 12323 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
222, 8rplogcld 26608 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2322rpne0d 13056 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
2421, 19, 23divcld 12023 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
25 fzfid 13974 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2610adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
27 elfznn 13565 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2827adantl 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2928nnrpd 13049 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 13068 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3112ffvelcdmi 7092 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 11274 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 15419 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 26602 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
36 1red 11247 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
3735, 36readdcld 11275 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℝ)
3834, 37remulcld 11276 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
3938recnd 11274 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4025, 39fsumcl 15715 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4124, 40mulcld 11266 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℂ)
4220, 41subcld 11603 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℂ)
4334recnd 11274 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4425, 43fsumcl 15715 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4524, 44mulcld 11266 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℂ)
462recnd 11274 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
4710rpne0d 13056 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
4842, 45, 46, 47divdird 12061 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)))
4916, 18remulcld 11276 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
5049recnd 11274 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
5150, 41, 45subsubd 11631 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5224, 40, 44subdid 11702 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5325, 39, 43fsumsub 15770 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))
5437recnd 11274 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℂ)
55 1cnd 11241 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
5643, 54, 55subdid 11702 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)))
5735recnd 11274 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
5857, 55pncand 11604 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘𝑛) + 1) − 1) = (log‘𝑛))
5958oveq2d 7435 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6043mulridd 11263 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1) = (abs‘(𝑅‘(𝑥 / 𝑛))))
6160oveq2d 7435 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))))
6256, 59, 613eqtr3rd 2774 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6362sumeq2dv 15685 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6453, 63eqtr3d 2767 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6564oveq2d 7435 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6652, 65eqtr3d 2767 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6766oveq2d 7435 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6851, 67eqtr3d 2767 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6968oveq1d 7434 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7048, 69eqtr3d 2767 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7170mpteq2dva 5249 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)))
72 2re 12319 . . . . . . . 8 2 ∈ ℝ
7372a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
7473, 22rerpdivcld 13082 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
7525, 38fsumrecl 15716 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
7674, 75remulcld 11276 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℝ)
7749, 76resubcld 11674 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℝ)
7877, 10rerpdivcld 13082 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ∈ ℝ)
7925, 34fsumrecl 15716 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
8074, 79remulcld 11276 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
8180, 10rerpdivcld 13082 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
82 1red 11247 . . . 4 (𝜑 → 1 ∈ ℝ)
83 pntsval.1 . . . . . 6 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
84 pntrlog2bnd.t . . . . . 6 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
8583, 11, 84pntrlog2bndlem4 27558 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
8685a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1))
8728nnred 12260 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
88 simpl 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ)
89 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
9089relogcld 26602 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (log‘𝑎) ∈ ℝ)
9188, 90remulcld 11276 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (𝑎 · (log‘𝑎)) ∈ ℝ)
92 0red 11249 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ ¬ 𝑎 ∈ ℝ+) → 0 ∈ ℝ)
9391, 92ifclda 4565 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) ∈ ℝ)
9484, 93fmpti 7121 . . . . . . . . . . . 12 𝑇:ℝ⟶ℝ
9594ffvelcdmi 7092 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (𝑇𝑛) ∈ ℝ)
9687, 95syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℝ)
9787, 36resubcld 11674 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
9894ffvelcdmi 7092 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℝ)
10096, 99resubcld 11674 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℝ)
10134, 100remulcld 11276 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10225, 101fsumrecl 15716 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10374, 102remulcld 11276 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℝ)
10449, 103resubcld 11674 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
105104, 10rerpdivcld 13082 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥) ∈ ℝ)
106 2rp 13014 . . . . . . . . . . 11 2 ∈ ℝ+
107106a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
108107rpge0d 13055 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
10973, 22, 108divge0d 13091 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 / (log‘𝑥)))
11033absge0d 15427 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
11129adantr 479 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ+)
112111rpcnd 13053 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℂ)
11357adantr 479 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℂ)
114112, 113mulcld 11266 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘𝑛)) ∈ ℂ)
115 simpr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 < 𝑛)
116 1re 11246 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
117111rpred 13051 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ)
118 difrp 13047 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
119116, 117, 118sylancr 585 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
120115, 119mpbid 231 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℝ+)
121120relogcld 26602 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℝ)
122121recnd 11274 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℂ)
123112, 122mulcld 11266 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘(𝑛 − 1))) ∈ ℂ)
124114, 123, 122subsubd 11631 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
125 rpre 13017 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
126 eleq1 2813 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 ∈ ℝ+𝑛 ∈ ℝ+))
127 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛𝑎 = 𝑛)
128 fveq2 6896 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
129127, 128oveq12d 7437 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛)))
130126, 129ifbieq1d 4554 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
131 ovex 7452 . . . . . . . . . . . . . . . . . . 19 (𝑛 · (log‘𝑛)) ∈ V
132 c0ex 11240 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
133131, 132ifex 4580 . . . . . . . . . . . . . . . . . 18 if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) ∈ V
134130, 84, 133fvmpt 7004 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
135125, 134syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
136 iftrue 4536 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) = (𝑛 · (log‘𝑛)))
137135, 136eqtrd 2765 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
138111, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
139 rpre 13017 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ+ → (𝑛 − 1) ∈ ℝ)
140 eleq1 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 ∈ ℝ+ ↔ (𝑛 − 1) ∈ ℝ+))
141 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → 𝑎 = (𝑛 − 1))
142 fveq2 6896 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → (log‘𝑎) = (log‘(𝑛 − 1)))
143141, 142oveq12d 7437 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 · (log‘𝑎)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
144140, 143ifbieq1d 4554 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑛 − 1) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
145 ovex 7452 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) · (log‘(𝑛 − 1))) ∈ V
146145, 132ifex 4580 . . . . . . . . . . . . . . . . . . 19 if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) ∈ V
147144, 84, 146fvmpt 7004 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
148139, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
149 iftrue 4536 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
150148, 149eqtrd 2765 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
151120, 150syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
152 1cnd 11241 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℂ)
153112, 152, 122subdird 11703 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · (log‘(𝑛 − 1))) = ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))))
154122mullidd 11264 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · (log‘(𝑛 − 1))) = (log‘(𝑛 − 1)))
155154oveq2d 7435 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
156151, 153, 1553eqtrd 2769 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
157138, 156oveq12d 7437 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))))
158112, 113, 122subdid 11702 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))))
159158oveq1d 7434 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
160124, 157, 1593eqtr4d 2775 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
161111relogcld 26602 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℝ)
162161, 121resubcld 11674 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℝ)
163162recnd 11274 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℂ)
164112, 152, 163subdird 11703 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))))
165163mullidd 11264 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
166165oveq2d 7435 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))))
167117, 162remulcld 11276 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℝ)
168167recnd 11274 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℂ)
169168, 113, 122subsub3d 11633 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
170164, 166, 1693eqtrd 2769 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
171112, 152npcand 11607 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) + 1) = 𝑛)
172171fveq2d 6900 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
173172oveq1d 7434 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
174 logdifbnd 26971 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
175120, 174syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
176173, 175eqbrtrrd 5173 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
177 1red 11247 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℝ)
178162, 177, 120lemuldiv2d 13101 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1 ↔ ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1))))
179176, 178mpbird 256 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1)
180170, 179eqbrtrrd 5173 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1)
181167, 121readdcld 11275 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ∈ ℝ)
182181, 161, 177lesubadd2d 11845 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1 ↔ ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1)))
183180, 182mpbid 231 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
184160, 183eqbrtrd 5171 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
185 fveq2 6896 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇𝑛) = (𝑇‘1))
186 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → 𝑎 = 1)
187186, 3eqeltrdi 2833 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → 𝑎 ∈ ℝ+)
188187iftrued 4538 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = (𝑎 · (log‘𝑎)))
189 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 1 → (log‘𝑎) = (log‘1))
190 log1 26564 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘1) = 0
191189, 190eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → (log‘𝑎) = 0)
192186, 191oveq12d 7437 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = (1 · 0))
193 ax-1cn 11198 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
194193mul01i 11436 . . . . . . . . . . . . . . . . . . . . 21 (1 · 0) = 0
195192, 194eqtrdi 2781 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = 0)
196188, 195eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
197196, 84, 132fvmpt 7004 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → (𝑇‘1) = 0)
198116, 197ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘1) = 0
199185, 198eqtrdi 2781 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇𝑛) = 0)
200 oveq1 7426 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
201 1m1e0 12317 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
202200, 201eqtrdi 2781 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 − 1) = 0)
203202fveq2d 6900 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = (𝑇‘0))
204 0re 11248 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
205 rpne0 13025 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+𝑎 ≠ 0)
206205necon2bi 2960 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → ¬ 𝑎 ∈ ℝ+)
207206iffalsed 4541 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
208207, 84, 132fvmpt 7004 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (𝑇‘0) = 0)
209204, 208ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘0) = 0
210203, 209eqtrdi 2781 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = 0)
211199, 210oveq12d 7437 . . . . . . . . . . . . . . 15 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = (0 − 0))
212 0m0e0 12365 . . . . . . . . . . . . . . 15 (0 − 0) = 0
213211, 212eqtrdi 2781 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
214213eqcoms 2733 . . . . . . . . . . . . 13 (1 = 𝑛 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
215214adantl 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
216 0red 11249 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ∈ ℝ)
21728nnge1d 12293 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
21887, 217logge0d 26609 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
21935lep1d 12178 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ≤ ((log‘𝑛) + 1))
220216, 35, 37, 218, 219letrd 11403 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘𝑛) + 1))
221220adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → 0 ≤ ((log‘𝑛) + 1))
222215, 221eqbrtrd 5171 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
223 elfzle1 13539 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 1 ≤ 𝑛)
224223adantl 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
22536, 87leloed 11389 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 ≤ 𝑛 ↔ (1 < 𝑛 ∨ 1 = 𝑛)))
226224, 225mpbid 231 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 < 𝑛 ∨ 1 = 𝑛))
227184, 222, 226mpjaodan 956 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
228100, 37, 34, 110, 227lemul2ad 12187 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
22925, 101, 38, 228fsumle 15781 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
230102, 75, 74, 109, 229lemul2ad 12187 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))))
231103, 76, 49, 230lesub2dd 11863 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ≤ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
23277, 104, 10, 231lediv1dd 13109 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
233232adantrr 715 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
23482, 86, 105, 78, 233lo1le 15634 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥)) ∈ ≤𝑂(1))
235106a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
236 pntrlog2bndlem5.1 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
237235, 236rpmulcld 13067 . . . . . . 7 (𝜑 → (2 · 𝐵) ∈ ℝ+)
238237rpred 13051 . . . . . 6 (𝜑 → (2 · 𝐵) ∈ ℝ)
239238adantr 479 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ)
2405, 22rerpdivcld 13082 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
2415, 240readdcld 11275 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℝ)
242 ioossre 13420 . . . . . 6 (1(,)+∞) ⊆ ℝ
243 lo1const 15601 . . . . . 6 (((1(,)+∞) ⊆ ℝ ∧ (2 · 𝐵) ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
244242, 238, 243sylancr 585 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
245 lo1const 15601 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
246242, 82, 245sylancr 585 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
247 divlogrlim 26614 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
248 rlimo1 15597 . . . . . . . 8 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
249247, 248mp1i 13 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
250240, 249o1lo1d 15519 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ ≤𝑂(1))
2515, 240, 246, 250lo1add 15607 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 / (log‘𝑥)))) ∈ ≤𝑂(1))
252237adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ+)
253252rpge0d 13055 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 · 𝐵))
254239, 241, 244, 251, 253lo1mul 15608 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((2 · 𝐵) · (1 + (1 / (log‘𝑥))))) ∈ ≤𝑂(1))
255239, 241remulcld 11276 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) ∈ ℝ)
25679, 10rerpdivcld 13082 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
25718, 5readdcld 11275 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
258236adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ+)
259258rpred 13051 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ)
260257, 259remulcld 11276 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) · 𝐵) ∈ ℝ)
26128nnrecred 12296 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
26225, 261fsumrecl 15716 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
263262, 259remulcld 11276 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ∈ ℝ)
26434, 26rerpdivcld 13082 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
265259adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℝ)
266261, 265remulcld 11276 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 / 𝑛) · 𝐵) ∈ ℝ)
26730rpcnd 13053 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
26830rpne0d 13056 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
26933, 267, 268absdivd 15438 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))))
2702adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
271270, 28nndivred 12299 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
27230rpge0d 13055 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
273271, 272absidd 15405 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
274273oveq2d 7435 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
275269, 274eqtrd 2765 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
27646adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
27787recnd 11274 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
27847adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ≠ 0)
27928nnne0d 12295 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
28043, 276, 277, 278, 279divdiv2d 12055 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥))
28143, 277, 276, 278div23d 12060 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
282275, 280, 2813eqtrd 2769 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
283 fveq2 6896 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (𝑅𝑦) = (𝑅‘(𝑥 / 𝑛)))
284 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
285283, 284oveq12d 7437 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → ((𝑅𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))
286285fveq2d 6900 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
287286breq1d 5159 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵))
288 pntrlog2bndlem5.2 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
289288ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
290287, 289, 30rspcdva 3607 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)
291282, 290eqbrtrrd 5173 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵)
292264, 265, 29lemuldivd 13100 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵 ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛)))
293291, 292mpbid 231 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛))
294265recnd 11274 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℂ)
295294, 277, 279divrec2d 12027 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐵 / 𝑛) = ((1 / 𝑛) · 𝐵))
296293, 295breqtrd 5175 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ ((1 / 𝑛) · 𝐵))
29725, 264, 266, 296fsumle 15781 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
29825, 46, 43, 47fsumdivc 15768 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥))
299258rpcnd 13053 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℂ)
300261recnd 11274 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
30125, 299, 300fsummulc1 15767 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
302297, 298, 3013brtr4d 5181 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵))
303258rpge0d 13055 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵)
304 harmonicubnd 26987 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
3052, 9, 304syl2anc 582 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
306262, 257, 259, 303, 305lemul1ad 12186 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ≤ (((log‘𝑥) + 1) · 𝐵))
307256, 263, 260, 302, 306letrd 11403 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (((log‘𝑥) + 1) · 𝐵))
308256, 260, 74, 109, 307lemul2ad 12187 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)) ≤ ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
30924, 44, 46, 47divassd 12058 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)))
310241recnd 11274 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℂ)
31121, 299, 310mul32d 11456 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵))
312 1cnd 11241 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
31319, 312, 19, 23divdird 12061 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) / (log‘𝑥)) = (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))))
31419, 23dividd 12021 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
315314oveq1d 7434 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))) = (1 + (1 / (log‘𝑥))))
316313, 315eqtr2d 2766 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) = (((log‘𝑥) + 1) / (log‘𝑥)))
317316oveq2d 7435 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
31819, 312addcld 11265 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
31921, 19, 318, 23div32d 12046 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
320317, 319eqtr4d 2768 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)))
321320oveq1d 7434 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵) = (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵))
32224, 318, 299mulassd 11269 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
323311, 321, 3223eqtrd 2769 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
324308, 309, 3233brtr4d 5181 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
325324adantrr 715 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
32682, 254, 255, 81, 325lo1le 15634 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
32778, 81, 234, 326lo1add 15607 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) ∈ ≤𝑂(1))
32871, 327eqeltrrd 2826 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  wral 3050  wss 3944  ifcif 4530   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  +∞cpnf 11277   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  cn 12245  2c2 12300  +crp 13009  (,)cioo 13359  ...cfz 13519  cfl 13791  abscabs 15217  𝑟 crli 15465  𝑂(1)co1 15466  ≤𝑂(1)clo1 15467  Σcsu 15668  logclog 26533  Λcvma 27069  ψcchp 27070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-o1 15470  df-lo1 15471  df-sum 15669  df-ef 16047  df-e 16048  df-sin 16049  df-cos 16050  df-tan 16051  df-pi 16052  df-dvds 16235  df-gcd 16473  df-prm 16646  df-pc 16809  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-ulm 26358  df-log 26535  df-cxp 26536  df-atan 26844  df-em 26970  df-cht 27074  df-vma 27075  df-chp 27076  df-ppi 27077  df-mu 27078
This theorem is referenced by:  pntrlog2bndlem6  27561
  Copyright terms: Public domain W3C validator