MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem5 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem5 27625
Description: Lemma for pntrlog2bnd 27628. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
Assertion
Ref Expression
pntrlog2bndlem5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦   𝐵,𝑛,𝑥,𝑦   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem5
StepHypRef Expression
1 elioore 13417 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 13038 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11262 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13446 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11409 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13116 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bnd.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 27607 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1312ffvelcdmi 7103 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1410, 13syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1514recnd 11289 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1615abscld 15475 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1716recnd 11289 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℂ)
1810relogcld 26665 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1918recnd 11289 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2017, 19mulcld 11281 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
21 2cnd 12344 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
222, 8rplogcld 26671 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2322rpne0d 13082 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
2421, 19, 23divcld 12043 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
25 fzfid 14014 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2610adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
27 elfznn 13593 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2827adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2928nnrpd 13075 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 13094 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3112ffvelcdmi 7103 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 11289 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 15475 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 26665 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
36 1red 11262 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
3735, 36readdcld 11290 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℝ)
3834, 37remulcld 11291 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
3938recnd 11289 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4025, 39fsumcl 15769 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4124, 40mulcld 11281 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℂ)
4220, 41subcld 11620 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℂ)
4334recnd 11289 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4425, 43fsumcl 15769 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4524, 44mulcld 11281 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℂ)
462recnd 11289 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
4710rpne0d 13082 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
4842, 45, 46, 47divdird 12081 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)))
4916, 18remulcld 11291 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
5049recnd 11289 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
5150, 41, 45subsubd 11648 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5224, 40, 44subdid 11719 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5325, 39, 43fsumsub 15824 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))
5437recnd 11289 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℂ)
55 1cnd 11256 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
5643, 54, 55subdid 11719 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)))
5735recnd 11289 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
5857, 55pncand 11621 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘𝑛) + 1) − 1) = (log‘𝑛))
5958oveq2d 7447 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6043mulridd 11278 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1) = (abs‘(𝑅‘(𝑥 / 𝑛))))
6160oveq2d 7447 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))))
6256, 59, 613eqtr3rd 2786 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6362sumeq2dv 15738 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6453, 63eqtr3d 2779 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6564oveq2d 7447 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6652, 65eqtr3d 2779 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6766oveq2d 7447 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6851, 67eqtr3d 2779 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6968oveq1d 7446 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7048, 69eqtr3d 2779 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7170mpteq2dva 5242 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)))
72 2re 12340 . . . . . . . 8 2 ∈ ℝ
7372a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
7473, 22rerpdivcld 13108 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
7525, 38fsumrecl 15770 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
7674, 75remulcld 11291 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℝ)
7749, 76resubcld 11691 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℝ)
7877, 10rerpdivcld 13108 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ∈ ℝ)
7925, 34fsumrecl 15770 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
8074, 79remulcld 11291 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
8180, 10rerpdivcld 13108 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
82 1red 11262 . . . 4 (𝜑 → 1 ∈ ℝ)
83 pntsval.1 . . . . . 6 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
84 pntrlog2bnd.t . . . . . 6 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
8583, 11, 84pntrlog2bndlem4 27624 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
8685a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1))
8728nnred 12281 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
88 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ)
89 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
9089relogcld 26665 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (log‘𝑎) ∈ ℝ)
9188, 90remulcld 11291 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (𝑎 · (log‘𝑎)) ∈ ℝ)
92 0red 11264 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ ¬ 𝑎 ∈ ℝ+) → 0 ∈ ℝ)
9391, 92ifclda 4561 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) ∈ ℝ)
9484, 93fmpti 7132 . . . . . . . . . . . 12 𝑇:ℝ⟶ℝ
9594ffvelcdmi 7103 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (𝑇𝑛) ∈ ℝ)
9687, 95syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℝ)
9787, 36resubcld 11691 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
9894ffvelcdmi 7103 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℝ)
10096, 99resubcld 11691 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℝ)
10134, 100remulcld 11291 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10225, 101fsumrecl 15770 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10374, 102remulcld 11291 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℝ)
10449, 103resubcld 11691 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
105104, 10rerpdivcld 13108 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥) ∈ ℝ)
106 2rp 13039 . . . . . . . . . . 11 2 ∈ ℝ+
107106a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
108107rpge0d 13081 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
10973, 22, 108divge0d 13117 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 / (log‘𝑥)))
11033absge0d 15483 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
11129adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ+)
112111rpcnd 13079 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℂ)
11357adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℂ)
114112, 113mulcld 11281 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘𝑛)) ∈ ℂ)
115 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 < 𝑛)
116 1re 11261 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
117111rpred 13077 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ)
118 difrp 13073 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
119116, 117, 118sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
120115, 119mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℝ+)
121120relogcld 26665 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℝ)
122121recnd 11289 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℂ)
123112, 122mulcld 11281 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘(𝑛 − 1))) ∈ ℂ)
124114, 123, 122subsubd 11648 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
125 rpre 13043 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
126 eleq1 2829 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 ∈ ℝ+𝑛 ∈ ℝ+))
127 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛𝑎 = 𝑛)
128 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
129127, 128oveq12d 7449 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛)))
130126, 129ifbieq1d 4550 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
131 ovex 7464 . . . . . . . . . . . . . . . . . . 19 (𝑛 · (log‘𝑛)) ∈ V
132 c0ex 11255 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
133131, 132ifex 4576 . . . . . . . . . . . . . . . . . 18 if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) ∈ V
134130, 84, 133fvmpt 7016 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
135125, 134syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
136 iftrue 4531 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) = (𝑛 · (log‘𝑛)))
137135, 136eqtrd 2777 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
138111, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
139 rpre 13043 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ+ → (𝑛 − 1) ∈ ℝ)
140 eleq1 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 ∈ ℝ+ ↔ (𝑛 − 1) ∈ ℝ+))
141 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → 𝑎 = (𝑛 − 1))
142 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → (log‘𝑎) = (log‘(𝑛 − 1)))
143141, 142oveq12d 7449 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 · (log‘𝑎)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
144140, 143ifbieq1d 4550 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑛 − 1) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
145 ovex 7464 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) · (log‘(𝑛 − 1))) ∈ V
146145, 132ifex 4576 . . . . . . . . . . . . . . . . . . 19 if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) ∈ V
147144, 84, 146fvmpt 7016 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
148139, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
149 iftrue 4531 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
150148, 149eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
151120, 150syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
152 1cnd 11256 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℂ)
153112, 152, 122subdird 11720 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · (log‘(𝑛 − 1))) = ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))))
154122mullidd 11279 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · (log‘(𝑛 − 1))) = (log‘(𝑛 − 1)))
155154oveq2d 7447 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
156151, 153, 1553eqtrd 2781 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
157138, 156oveq12d 7449 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))))
158112, 113, 122subdid 11719 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))))
159158oveq1d 7446 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
160124, 157, 1593eqtr4d 2787 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
161111relogcld 26665 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℝ)
162161, 121resubcld 11691 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℝ)
163162recnd 11289 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℂ)
164112, 152, 163subdird 11720 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))))
165163mullidd 11279 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
166165oveq2d 7447 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))))
167117, 162remulcld 11291 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℝ)
168167recnd 11289 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℂ)
169168, 113, 122subsub3d 11650 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
170164, 166, 1693eqtrd 2781 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
171112, 152npcand 11624 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) + 1) = 𝑛)
172171fveq2d 6910 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
173172oveq1d 7446 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
174 logdifbnd 27037 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
175120, 174syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
176173, 175eqbrtrrd 5167 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
177 1red 11262 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℝ)
178162, 177, 120lemuldiv2d 13127 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1 ↔ ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1))))
179176, 178mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1)
180170, 179eqbrtrrd 5167 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1)
181167, 121readdcld 11290 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ∈ ℝ)
182181, 161, 177lesubadd2d 11862 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1 ↔ ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1)))
183180, 182mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
184160, 183eqbrtrd 5165 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
185 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇𝑛) = (𝑇‘1))
186 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → 𝑎 = 1)
187186, 3eqeltrdi 2849 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → 𝑎 ∈ ℝ+)
188187iftrued 4533 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = (𝑎 · (log‘𝑎)))
189 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 1 → (log‘𝑎) = (log‘1))
190 log1 26627 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘1) = 0
191189, 190eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → (log‘𝑎) = 0)
192186, 191oveq12d 7449 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = (1 · 0))
193 ax-1cn 11213 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
194193mul01i 11451 . . . . . . . . . . . . . . . . . . . . 21 (1 · 0) = 0
195192, 194eqtrdi 2793 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = 0)
196188, 195eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
197196, 84, 132fvmpt 7016 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → (𝑇‘1) = 0)
198116, 197ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘1) = 0
199185, 198eqtrdi 2793 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇𝑛) = 0)
200 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
201 1m1e0 12338 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
202200, 201eqtrdi 2793 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 − 1) = 0)
203202fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = (𝑇‘0))
204 0re 11263 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
205 rpne0 13051 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+𝑎 ≠ 0)
206205necon2bi 2971 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → ¬ 𝑎 ∈ ℝ+)
207206iffalsed 4536 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
208207, 84, 132fvmpt 7016 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (𝑇‘0) = 0)
209204, 208ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘0) = 0
210203, 209eqtrdi 2793 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = 0)
211199, 210oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = (0 − 0))
212 0m0e0 12386 . . . . . . . . . . . . . . 15 (0 − 0) = 0
213211, 212eqtrdi 2793 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
214213eqcoms 2745 . . . . . . . . . . . . 13 (1 = 𝑛 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
215214adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
216 0red 11264 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ∈ ℝ)
21728nnge1d 12314 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
21887, 217logge0d 26672 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
21935lep1d 12199 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ≤ ((log‘𝑛) + 1))
220216, 35, 37, 218, 219letrd 11418 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘𝑛) + 1))
221220adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → 0 ≤ ((log‘𝑛) + 1))
222215, 221eqbrtrd 5165 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
223 elfzle1 13567 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 1 ≤ 𝑛)
224223adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
22536, 87leloed 11404 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 ≤ 𝑛 ↔ (1 < 𝑛 ∨ 1 = 𝑛)))
226224, 225mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 < 𝑛 ∨ 1 = 𝑛))
227184, 222, 226mpjaodan 961 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
228100, 37, 34, 110, 227lemul2ad 12208 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
22925, 101, 38, 228fsumle 15835 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
230102, 75, 74, 109, 229lemul2ad 12208 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))))
231103, 76, 49, 230lesub2dd 11880 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ≤ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
23277, 104, 10, 231lediv1dd 13135 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
233232adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
23482, 86, 105, 78, 233lo1le 15688 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥)) ∈ ≤𝑂(1))
235106a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
236 pntrlog2bndlem5.1 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
237235, 236rpmulcld 13093 . . . . . . 7 (𝜑 → (2 · 𝐵) ∈ ℝ+)
238237rpred 13077 . . . . . 6 (𝜑 → (2 · 𝐵) ∈ ℝ)
239238adantr 480 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ)
2405, 22rerpdivcld 13108 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
2415, 240readdcld 11290 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℝ)
242 ioossre 13448 . . . . . 6 (1(,)+∞) ⊆ ℝ
243 lo1const 15657 . . . . . 6 (((1(,)+∞) ⊆ ℝ ∧ (2 · 𝐵) ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
244242, 238, 243sylancr 587 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
245 lo1const 15657 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
246242, 82, 245sylancr 587 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
247 divlogrlim 26677 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
248 rlimo1 15653 . . . . . . . 8 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
249247, 248mp1i 13 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
250240, 249o1lo1d 15575 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ ≤𝑂(1))
2515, 240, 246, 250lo1add 15663 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 / (log‘𝑥)))) ∈ ≤𝑂(1))
252237adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ+)
253252rpge0d 13081 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 · 𝐵))
254239, 241, 244, 251, 253lo1mul 15664 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((2 · 𝐵) · (1 + (1 / (log‘𝑥))))) ∈ ≤𝑂(1))
255239, 241remulcld 11291 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) ∈ ℝ)
25679, 10rerpdivcld 13108 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
25718, 5readdcld 11290 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
258236adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ+)
259258rpred 13077 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ)
260257, 259remulcld 11291 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) · 𝐵) ∈ ℝ)
26128nnrecred 12317 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
26225, 261fsumrecl 15770 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
263262, 259remulcld 11291 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ∈ ℝ)
26434, 26rerpdivcld 13108 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
265259adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℝ)
266261, 265remulcld 11291 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 / 𝑛) · 𝐵) ∈ ℝ)
26730rpcnd 13079 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
26830rpne0d 13082 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
26933, 267, 268absdivd 15494 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))))
2702adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
271270, 28nndivred 12320 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
27230rpge0d 13081 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
273271, 272absidd 15461 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
274273oveq2d 7447 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
275269, 274eqtrd 2777 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
27646adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
27787recnd 11289 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
27847adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ≠ 0)
27928nnne0d 12316 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
28043, 276, 277, 278, 279divdiv2d 12075 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥))
28143, 277, 276, 278div23d 12080 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
282275, 280, 2813eqtrd 2781 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
283 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (𝑅𝑦) = (𝑅‘(𝑥 / 𝑛)))
284 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
285283, 284oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → ((𝑅𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))
286285fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
287286breq1d 5153 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵))
288 pntrlog2bndlem5.2 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
289288ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
290287, 289, 30rspcdva 3623 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)
291282, 290eqbrtrrd 5167 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵)
292264, 265, 29lemuldivd 13126 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵 ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛)))
293291, 292mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛))
294265recnd 11289 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℂ)
295294, 277, 279divrec2d 12047 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐵 / 𝑛) = ((1 / 𝑛) · 𝐵))
296293, 295breqtrd 5169 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ ((1 / 𝑛) · 𝐵))
29725, 264, 266, 296fsumle 15835 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
29825, 46, 43, 47fsumdivc 15822 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥))
299258rpcnd 13079 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℂ)
300261recnd 11289 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
30125, 299, 300fsummulc1 15821 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
302297, 298, 3013brtr4d 5175 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵))
303258rpge0d 13081 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵)
304 harmonicubnd 27053 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
3052, 9, 304syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
306262, 257, 259, 303, 305lemul1ad 12207 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ≤ (((log‘𝑥) + 1) · 𝐵))
307256, 263, 260, 302, 306letrd 11418 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (((log‘𝑥) + 1) · 𝐵))
308256, 260, 74, 109, 307lemul2ad 12208 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)) ≤ ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
30924, 44, 46, 47divassd 12078 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)))
310241recnd 11289 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℂ)
31121, 299, 310mul32d 11471 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵))
312 1cnd 11256 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
31319, 312, 19, 23divdird 12081 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) / (log‘𝑥)) = (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))))
31419, 23dividd 12041 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
315314oveq1d 7446 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))) = (1 + (1 / (log‘𝑥))))
316313, 315eqtr2d 2778 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) = (((log‘𝑥) + 1) / (log‘𝑥)))
317316oveq2d 7447 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
31819, 312addcld 11280 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
31921, 19, 318, 23div32d 12066 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
320317, 319eqtr4d 2780 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)))
321320oveq1d 7446 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵) = (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵))
32224, 318, 299mulassd 11284 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
323311, 321, 3223eqtrd 2781 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
324308, 309, 3233brtr4d 5175 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
325324adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
32682, 254, 255, 81, 325lo1le 15688 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
32778, 81, 234, 326lo1add 15663 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) ∈ ≤𝑂(1))
32871, 327eqeltrrd 2842 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  +crp 13034  (,)cioo 13387  ...cfz 13547  cfl 13830  abscabs 15273  𝑟 crli 15521  𝑂(1)co1 15522  ≤𝑂(1)clo1 15523  Σcsu 15722  logclog 26596  Λcvma 27135  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-o1 15526  df-lo1 15527  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-cxp 26599  df-atan 26910  df-em 27036  df-cht 27140  df-vma 27141  df-chp 27142  df-ppi 27143  df-mu 27144
This theorem is referenced by:  pntrlog2bndlem6  27627
  Copyright terms: Public domain W3C validator