MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem5 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem5 27499
Description: Lemma for pntrlog2bnd 27502. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
Assertion
Ref Expression
pntrlog2bndlem5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦   𝐵,𝑛,𝑥,𝑦   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem5
StepHypRef Expression
1 elioore 13343 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 12962 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11182 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13373 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11329 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13041 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bnd.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 27481 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1312ffvelcdmi 7058 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1410, 13syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1514recnd 11209 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1615abscld 15412 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1716recnd 11209 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℂ)
1810relogcld 26539 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1918recnd 11209 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2017, 19mulcld 11201 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
21 2cnd 12271 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
222, 8rplogcld 26545 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2322rpne0d 13007 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
2421, 19, 23divcld 11965 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
25 fzfid 13945 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2610adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
27 elfznn 13521 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2827adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2928nnrpd 13000 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 13019 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3112ffvelcdmi 7058 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 11209 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 15412 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 26539 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
36 1red 11182 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
3735, 36readdcld 11210 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℝ)
3834, 37remulcld 11211 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
3938recnd 11209 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4025, 39fsumcl 15706 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ)
4124, 40mulcld 11201 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℂ)
4220, 41subcld 11540 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℂ)
4334recnd 11209 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4425, 43fsumcl 15706 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
4524, 44mulcld 11201 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℂ)
462recnd 11209 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
4710rpne0d 13007 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
4842, 45, 46, 47divdird 12003 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)))
4916, 18remulcld 11211 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
5049recnd 11209 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
5150, 41, 45subsubd 11568 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5224, 40, 44subdid 11641 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))))
5325, 39, 43fsumsub 15761 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))
5437recnd 11209 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + 1) ∈ ℂ)
55 1cnd 11176 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
5643, 54, 55subdid 11641 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)))
5735recnd 11209 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
5857, 55pncand 11541 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘𝑛) + 1) − 1) = (log‘𝑛))
5958oveq2d 7406 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6043mulridd 11198 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1) = (abs‘(𝑅‘(𝑥 / 𝑛))))
6160oveq2d 7406 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))))
6256, 59, 613eqtr3rd 2774 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6362sumeq2dv 15675 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6453, 63eqtr3d 2767 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
6564oveq2d 7406 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6652, 65eqtr3d 2767 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
6766oveq2d 7406 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6851, 67eqtr3d 2767 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6968oveq1d 7405 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7048, 69eqtr3d 2767 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
7170mpteq2dva 5203 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)))
72 2re 12267 . . . . . . . 8 2 ∈ ℝ
7372a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
7473, 22rerpdivcld 13033 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
7525, 38fsumrecl 15707 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ)
7674, 75remulcld 11211 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℝ)
7749, 76resubcld 11613 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℝ)
7877, 10rerpdivcld 13033 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ∈ ℝ)
7925, 34fsumrecl 15707 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
8074, 79remulcld 11211 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
8180, 10rerpdivcld 13033 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
82 1red 11182 . . . 4 (𝜑 → 1 ∈ ℝ)
83 pntsval.1 . . . . . 6 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
84 pntrlog2bnd.t . . . . . 6 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
8583, 11, 84pntrlog2bndlem4 27498 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
8685a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1))
8728nnred 12208 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
88 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ)
89 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
9089relogcld 26539 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (log‘𝑎) ∈ ℝ)
9188, 90remulcld 11211 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (𝑎 · (log‘𝑎)) ∈ ℝ)
92 0red 11184 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ ¬ 𝑎 ∈ ℝ+) → 0 ∈ ℝ)
9391, 92ifclda 4527 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) ∈ ℝ)
9484, 93fmpti 7087 . . . . . . . . . . . 12 𝑇:ℝ⟶ℝ
9594ffvelcdmi 7058 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (𝑇𝑛) ∈ ℝ)
9687, 95syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℝ)
9787, 36resubcld 11613 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
9894ffvelcdmi 7058 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℝ)
10096, 99resubcld 11613 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℝ)
10134, 100remulcld 11211 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10225, 101fsumrecl 15707 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
10374, 102remulcld 11211 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℝ)
10449, 103resubcld 11613 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
105104, 10rerpdivcld 13033 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥) ∈ ℝ)
106 2rp 12963 . . . . . . . . . . 11 2 ∈ ℝ+
107106a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
108107rpge0d 13006 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
10973, 22, 108divge0d 13042 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 / (log‘𝑥)))
11033absge0d 15420 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
11129adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ+)
112111rpcnd 13004 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℂ)
11357adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℂ)
114112, 113mulcld 11201 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘𝑛)) ∈ ℂ)
115 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 < 𝑛)
116 1re 11181 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
117111rpred 13002 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 𝑛 ∈ ℝ)
118 difrp 12998 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
119116, 117, 118sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℝ+))
120115, 119mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℝ+)
121120relogcld 26539 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℝ)
122121recnd 11209 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘(𝑛 − 1)) ∈ ℂ)
123112, 122mulcld 11201 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · (log‘(𝑛 − 1))) ∈ ℂ)
124114, 123, 122subsubd 11568 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
125 rpre 12967 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
126 eleq1 2817 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 ∈ ℝ+𝑛 ∈ ℝ+))
127 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛𝑎 = 𝑛)
128 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
129127, 128oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛)))
130126, 129ifbieq1d 4516 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
131 ovex 7423 . . . . . . . . . . . . . . . . . . 19 (𝑛 · (log‘𝑛)) ∈ V
132 c0ex 11175 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
133131, 132ifex 4542 . . . . . . . . . . . . . . . . . 18 if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) ∈ V
134130, 84, 133fvmpt 6971 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
135125, 134syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
136 iftrue 4497 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) = (𝑛 · (log‘𝑛)))
137135, 136eqtrd 2765 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
138111, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
139 rpre 12967 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ+ → (𝑛 − 1) ∈ ℝ)
140 eleq1 2817 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 ∈ ℝ+ ↔ (𝑛 − 1) ∈ ℝ+))
141 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → 𝑎 = (𝑛 − 1))
142 fveq2 6861 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑛 − 1) → (log‘𝑎) = (log‘(𝑛 − 1)))
143141, 142oveq12d 7408 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (𝑛 − 1) → (𝑎 · (log‘𝑎)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
144140, 143ifbieq1d 4516 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑛 − 1) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
145 ovex 7423 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) · (log‘(𝑛 − 1))) ∈ V
146145, 132ifex 4542 . . . . . . . . . . . . . . . . . . 19 if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) ∈ V
147144, 84, 146fvmpt 6971 . . . . . . . . . . . . . . . . . 18 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
148139, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0))
149 iftrue 4497 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → if((𝑛 − 1) ∈ ℝ+, ((𝑛 − 1) · (log‘(𝑛 − 1))), 0) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
150148, 149eqtrd 2765 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ℝ+ → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
151120, 150syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1))))
152 1cnd 11176 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℂ)
153112, 152, 122subdird 11642 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · (log‘(𝑛 − 1))) = ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))))
154122mullidd 11199 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · (log‘(𝑛 − 1))) = (log‘(𝑛 − 1)))
155154oveq2d 7406 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · (log‘(𝑛 − 1))) − (1 · (log‘(𝑛 − 1)))) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
156151, 153, 1553eqtrd 2769 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑇‘(𝑛 − 1)) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))
157138, 156oveq12d 7408 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))))
158112, 113, 122subdid 11641 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))))
159158oveq1d 7405 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) = (((𝑛 · (log‘𝑛)) − (𝑛 · (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
160124, 157, 1593eqtr4d 2775 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))))
161111relogcld 26539 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘𝑛) ∈ ℝ)
162161, 121resubcld 11613 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℝ)
163162recnd 11209 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ∈ ℂ)
164112, 152, 163subdird 11642 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))))
165163mullidd 11199 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (1 · ((log‘𝑛) − (log‘(𝑛 − 1)))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
166165oveq2d 7406 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))))
167117, 162remulcld 11211 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℝ)
168167recnd 11209 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) ∈ ℂ)
169168, 113, 122subsub3d 11570 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
170164, 166, 1693eqtrd 2769 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) = (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)))
171112, 152npcand 11544 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) + 1) = 𝑛)
172171fveq2d 6865 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
173172oveq1d 7405 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) = ((log‘𝑛) − (log‘(𝑛 − 1))))
174 logdifbnd 26911 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ+ → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
175120, 174syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
176173, 175eqbrtrrd 5134 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))
177 1red 11182 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → 1 ∈ ℝ)
178162, 177, 120lemuldiv2d 13052 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1 ↔ ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1))))
179176, 178mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 − 1) · ((log‘𝑛) − (log‘(𝑛 − 1)))) ≤ 1)
180170, 179eqbrtrrd 5134 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → (((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1)
181167, 121readdcld 11210 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ∈ ℝ)
182181, 161, 177lesubadd2d 11784 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛)) ≤ 1 ↔ ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1)))
183180, 182mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
184160, 183eqbrtrd 5132 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 < 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
185 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇𝑛) = (𝑇‘1))
186 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → 𝑎 = 1)
187186, 3eqeltrdi 2837 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → 𝑎 ∈ ℝ+)
188187iftrued 4499 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = (𝑎 · (log‘𝑎)))
189 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 1 → (log‘𝑎) = (log‘1))
190 log1 26501 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘1) = 0
191189, 190eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 1 → (log‘𝑎) = 0)
192186, 191oveq12d 7408 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = (1 · 0))
193 ax-1cn 11133 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
194193mul01i 11371 . . . . . . . . . . . . . . . . . . . . 21 (1 · 0) = 0
195192, 194eqtrdi 2781 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 1 → (𝑎 · (log‘𝑎)) = 0)
196188, 195eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 1 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
197196, 84, 132fvmpt 6971 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → (𝑇‘1) = 0)
198116, 197ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘1) = 0
199185, 198eqtrdi 2781 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇𝑛) = 0)
200 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
201 1m1e0 12265 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
202200, 201eqtrdi 2781 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 − 1) = 0)
203202fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = (𝑇‘0))
204 0re 11183 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
205 rpne0 12975 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+𝑎 ≠ 0)
206205necon2bi 2956 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → ¬ 𝑎 ∈ ℝ+)
207206iffalsed 4502 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
208207, 84, 132fvmpt 6971 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (𝑇‘0) = 0)
209204, 208ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘0) = 0
210203, 209eqtrdi 2781 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = 0)
211199, 210oveq12d 7408 . . . . . . . . . . . . . . 15 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = (0 − 0))
212 0m0e0 12308 . . . . . . . . . . . . . . 15 (0 − 0) = 0
213211, 212eqtrdi 2781 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
214213eqcoms 2738 . . . . . . . . . . . . 13 (1 = 𝑛 → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
215214adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) = 0)
216 0red 11184 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ∈ ℝ)
21728nnge1d 12241 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
21887, 217logge0d 26546 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
21935lep1d 12121 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ≤ ((log‘𝑛) + 1))
220216, 35, 37, 218, 219letrd 11338 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘𝑛) + 1))
221220adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → 0 ≤ ((log‘𝑛) + 1))
222215, 221eqbrtrd 5132 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 1 = 𝑛) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
223 elfzle1 13495 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 1 ≤ 𝑛)
224223adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
22536, 87leloed 11324 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 ≤ 𝑛 ↔ (1 < 𝑛 ∨ 1 = 𝑛)))
226224, 225mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 < 𝑛 ∨ 1 = 𝑛))
227184, 222, 226mpjaodan 960 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1))
228100, 37, 34, 110, 227lemul2ad 12130 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
22925, 101, 38, 228fsumle 15772 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))
230102, 75, 74, 109, 229lemul2ad 12130 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))))
231103, 76, 49, 230lesub2dd 11802 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ≤ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
23277, 104, 10, 231lediv1dd 13060 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
233232adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
23482, 86, 105, 78, 233lo1le 15625 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥)) ∈ ≤𝑂(1))
235106a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
236 pntrlog2bndlem5.1 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
237235, 236rpmulcld 13018 . . . . . . 7 (𝜑 → (2 · 𝐵) ∈ ℝ+)
238237rpred 13002 . . . . . 6 (𝜑 → (2 · 𝐵) ∈ ℝ)
239238adantr 480 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ)
2405, 22rerpdivcld 13033 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
2415, 240readdcld 11210 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℝ)
242 ioossre 13375 . . . . . 6 (1(,)+∞) ⊆ ℝ
243 lo1const 15594 . . . . . 6 (((1(,)+∞) ⊆ ℝ ∧ (2 · 𝐵) ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
244242, 238, 243sylancr 587 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (2 · 𝐵)) ∈ ≤𝑂(1))
245 lo1const 15594 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
246242, 82, 245sylancr 587 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ ≤𝑂(1))
247 divlogrlim 26551 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
248 rlimo1 15590 . . . . . . . 8 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
249247, 248mp1i 13 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
250240, 249o1lo1d 15512 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ ≤𝑂(1))
2515, 240, 246, 250lo1add 15600 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 / (log‘𝑥)))) ∈ ≤𝑂(1))
252237adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · 𝐵) ∈ ℝ+)
253252rpge0d 13006 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 · 𝐵))
254239, 241, 244, 251, 253lo1mul 15601 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((2 · 𝐵) · (1 + (1 / (log‘𝑥))))) ∈ ≤𝑂(1))
255239, 241remulcld 11211 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) ∈ ℝ)
25679, 10rerpdivcld 13033 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
25718, 5readdcld 11210 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
258236adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ+)
259258rpred 13002 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ)
260257, 259remulcld 11211 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) · 𝐵) ∈ ℝ)
26128nnrecred 12244 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
26225, 261fsumrecl 15707 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
263262, 259remulcld 11211 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ∈ ℝ)
26434, 26rerpdivcld 13033 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ)
265259adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℝ)
266261, 265remulcld 11211 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 / 𝑛) · 𝐵) ∈ ℝ)
26730rpcnd 13004 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
26830rpne0d 13007 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
26933, 267, 268absdivd 15431 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))))
2702adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
271270, 28nndivred 12247 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
27230rpge0d 13006 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
273271, 272absidd 15396 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
274273oveq2d 7406 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
275269, 274eqtrd 2765 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
27646adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
27787recnd 11209 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
27847adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ≠ 0)
27928nnne0d 12243 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
28043, 276, 277, 278, 279divdiv2d 11997 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥))
28143, 277, 276, 278div23d 12002 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
282275, 280, 2813eqtrd 2769 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛))
283 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (𝑅𝑦) = (𝑅‘(𝑥 / 𝑛)))
284 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
285283, 284oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → ((𝑅𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))
286285fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
287286breq1d 5120 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵))
288 pntrlog2bndlem5.2 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
289288ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
290287, 289, 30rspcdva 3592 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)
291282, 290eqbrtrrd 5134 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵)
292264, 265, 29lemuldivd 13051 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵 ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛)))
293291, 292mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛))
294265recnd 11209 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐵 ∈ ℂ)
295294, 277, 279divrec2d 11969 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐵 / 𝑛) = ((1 / 𝑛) · 𝐵))
296293, 295breqtrd 5136 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ ((1 / 𝑛) · 𝐵))
29725, 264, 266, 296fsumle 15772 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
29825, 46, 43, 47fsumdivc 15759 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥))
299258rpcnd 13004 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℂ)
300261recnd 11209 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
30125, 299, 300fsummulc1 15758 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵))
302297, 298, 3013brtr4d 5142 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵))
303258rpge0d 13006 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵)
304 harmonicubnd 26927 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
3052, 9, 304syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
306262, 257, 259, 303, 305lemul1ad 12129 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵) ≤ (((log‘𝑥) + 1) · 𝐵))
307256, 263, 260, 302, 306letrd 11338 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (((log‘𝑥) + 1) · 𝐵))
308256, 260, 74, 109, 307lemul2ad 12130 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)) ≤ ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
30924, 44, 46, 47divassd 12000 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)))
310241recnd 11209 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℂ)
31121, 299, 310mul32d 11391 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵))
312 1cnd 11176 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
31319, 312, 19, 23divdird 12003 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) / (log‘𝑥)) = (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))))
31419, 23dividd 11963 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
315314oveq1d 7405 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))) = (1 + (1 / (log‘𝑥))))
316313, 315eqtr2d 2766 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) = (((log‘𝑥) + 1) / (log‘𝑥)))
317316oveq2d 7406 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
31819, 312addcld 11200 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
31921, 19, 318, 23div32d 11988 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) = (2 · (((log‘𝑥) + 1) / (log‘𝑥))))
320317, 319eqtr4d 2768 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · ((log‘𝑥) + 1)))
321320oveq1d 7405 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · (1 + (1 / (log‘𝑥)))) · 𝐵) = (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵))
32224, 318, 299mulassd 11204 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · ((log‘𝑥) + 1)) · 𝐵) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
323311, 321, 3223eqtrd 2769 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))) = ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵)))
324308, 309, 3233brtr4d 5142 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
325324adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥)))))
32682, 254, 255, 81, 325lo1le 15625 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
32778, 81, 234, 326lo1add 15600 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) ∈ ≤𝑂(1))
32871, 327eqeltrrd 2830 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  (,)cioo 13313  ...cfz 13475  cfl 13759  abscabs 15207  𝑟 crli 15458  𝑂(1)co1 15459  ≤𝑂(1)clo1 15460  Σcsu 15659  logclog 26470  Λcvma 27009  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-ulm 26293  df-log 26472  df-cxp 26473  df-atan 26784  df-em 26910  df-cht 27014  df-vma 27015  df-chp 27016  df-ppi 27017  df-mu 27018
This theorem is referenced by:  pntrlog2bndlem6  27501
  Copyright terms: Public domain W3C validator