Proof of Theorem pntrlog2bndlem5
Step | Hyp | Ref
| Expression |
1 | | elioore 13109 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
2 | 1 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ) |
3 | | 1rp 12734 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
4 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ+) |
5 | | 1red 10976 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ) |
6 | | eliooord 13138 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
7 | 6 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
8 | 7 | simpld 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
9 | 5, 2, 8 | ltled 11123 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
10 | 2, 4, 9 | rpgecld 12811 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ+) |
11 | | pntrlog2bnd.r |
. . . . . . . . . . . . 13
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
12 | 11 | pntrf 26711 |
. . . . . . . . . . . 12
⊢ 𝑅:ℝ+⟶ℝ |
13 | 12 | ffvelrni 6960 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) |
14 | 10, 13 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℝ) |
15 | 14 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℂ) |
16 | 15 | abscld 15148 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(𝑅‘𝑥)) ∈
ℝ) |
17 | 16 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(𝑅‘𝑥)) ∈
ℂ) |
18 | 10 | relogcld 25778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ) |
19 | 18 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℂ) |
20 | 17, 19 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘(𝑅‘𝑥)) · (log‘𝑥)) ∈
ℂ) |
21 | | 2cnd 12051 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℂ) |
22 | 2, 8 | rplogcld 25784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ+) |
23 | 22 | rpne0d 12777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ≠
0) |
24 | 21, 19, 23 | divcld 11751 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 /
(log‘𝑥)) ∈
ℂ) |
25 | | fzfid 13693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥))
∈ Fin) |
26 | 10 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
27 | | elfznn 13285 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
28 | 27 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
29 | 28 | nnrpd 12770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
30 | 26, 29 | rpdivcld 12789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
31 | 12 | ffvelrni 6960 |
. . . . . . . . . . . . 13
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
33 | 32 | recnd 11003 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
34 | 33 | abscld 15148 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
35 | 29 | relogcld 25778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℝ) |
36 | | 1red 10976 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
37 | 35, 36 | readdcld 11004 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘𝑛) + 1)
∈ ℝ) |
38 | 34, 37 | remulcld 11005 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ) |
39 | 38 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ) |
40 | 25, 39 | fsumcl 15445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℂ) |
41 | 24, 40 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℂ) |
42 | 20, 41 | subcld 11332 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℂ) |
43 | 34 | recnd 11003 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ) |
44 | 25, 43 | fsumcl 15445 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ) |
45 | 24, 44 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℂ) |
46 | 2 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℂ) |
47 | 10 | rpne0d 12777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0) |
48 | 42, 45, 46, 47 | divdird 11789 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = (((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) |
49 | 16, 18 | remulcld 11005 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘(𝑅‘𝑥)) · (log‘𝑥)) ∈
ℝ) |
50 | 49 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘(𝑅‘𝑥)) · (log‘𝑥)) ∈
ℂ) |
51 | 50, 41, 45 | subsubd 11360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) |
52 | 24, 40, 44 | subdid 11431 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) |
53 | 25, 39, 43 | fsumsub 15500 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) |
54 | 37 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘𝑛) + 1)
∈ ℂ) |
55 | | 1cnd 10970 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℂ) |
56 | 43, 54, 55 | subdid 11431 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1))) |
57 | 35 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℂ) |
58 | 57, 55 | pncand 11333 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((log‘𝑛) + 1)
− 1) = (log‘𝑛)) |
59 | 58 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((log‘𝑛) + 1) − 1)) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
60 | 43 | mulid1d 10992 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1) = (abs‘(𝑅‘(𝑥 / 𝑛)))) |
61 | 60 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · 1)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛))))) |
62 | 56, 59, 61 | 3eqtr3rd 2787 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
63 | 62 | sumeq2dv 15415 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
64 | 53, 63 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
65 | 64 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
66 | 52, 65 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
67 | 66 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))))) = (((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
68 | 51, 67 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) = (((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
69 | 68 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))))) / 𝑥) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) |
70 | 48, 69 | eqtr3d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) |
71 | 70 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))) |
72 | | 2re 12047 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
73 | 72 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ) |
74 | 73, 22 | rerpdivcld 12803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 /
(log‘𝑥)) ∈
ℝ) |
75 | 25, 38 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)) ∈ ℝ) |
76 | 74, 75 | remulcld 11005 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) ∈ ℝ) |
77 | 49, 76 | resubcld 11403 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ∈ ℝ) |
78 | 77, 10 | rerpdivcld 12803 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ∈ ℝ) |
79 | 25, 34 | fsumrecl 15446 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
80 | 74, 79 | remulcld 11005 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) ∈ ℝ) |
81 | 80, 10 | rerpdivcld 12803 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ) |
82 | | 1red 10976 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
83 | | pntsval.1 |
. . . . . 6
⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈
(1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
84 | | pntrlog2bnd.t |
. . . . . 6
⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
85 | 83, 11, 84 | pntrlog2bndlem4 26728 |
. . . . 5
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1) |
86 | 85 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)) |
87 | 28 | nnred 11988 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ) |
88 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+)
→ 𝑎 ∈
ℝ) |
89 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+)
→ 𝑎 ∈
ℝ+) |
90 | 89 | relogcld 25778 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+)
→ (log‘𝑎) ∈
ℝ) |
91 | 88, 90 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+)
→ (𝑎 ·
(log‘𝑎)) ∈
ℝ) |
92 | | 0red 10978 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℝ ∧ ¬
𝑎 ∈
ℝ+) → 0 ∈ ℝ) |
93 | 91, 92 | ifclda 4494 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+,
(𝑎 ·
(log‘𝑎)), 0) ∈
ℝ) |
94 | 84, 93 | fmpti 6986 |
. . . . . . . . . . . 12
⊢ 𝑇:ℝ⟶ℝ |
95 | 94 | ffvelrni 6960 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ → (𝑇‘𝑛) ∈ ℝ) |
96 | 87, 95 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑇‘𝑛) ∈
ℝ) |
97 | 87, 36 | resubcld 11403 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 − 1) ∈
ℝ) |
98 | 94 | ffvelrni 6960 |
. . . . . . . . . . 11
⊢ ((𝑛 − 1) ∈ ℝ
→ (𝑇‘(𝑛 − 1)) ∈
ℝ) |
99 | 97, 98 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑇‘(𝑛 − 1)) ∈
ℝ) |
100 | 96, 99 | resubcld 11403 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) ∈
ℝ) |
101 | 34, 100 | remulcld 11005 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))) ∈
ℝ) |
102 | 25, 101 | fsumrecl 15446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))) ∈
ℝ) |
103 | 74, 102 | remulcld 11005 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))))) ∈
ℝ) |
104 | 49, 103 | resubcld 11403 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) ∈
ℝ) |
105 | 104, 10 | rerpdivcld 12803 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥) ∈ ℝ) |
106 | | 2rp 12735 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ+ |
107 | 106 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ+) |
108 | 107 | rpge0d 12776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
2) |
109 | 73, 22, 108 | divge0d 12812 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 /
(log‘𝑥))) |
110 | 33 | absge0d 15156 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛)))) |
111 | 29 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
𝑛 ∈
ℝ+) |
112 | 111 | rpcnd 12774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
𝑛 ∈
ℂ) |
113 | 57 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(log‘𝑛) ∈
ℂ) |
114 | 112, 113 | mulcld 10995 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑛 ·
(log‘𝑛)) ∈
ℂ) |
115 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) → 1
< 𝑛) |
116 | | 1re 10975 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
117 | 111 | rpred 12772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
𝑛 ∈
ℝ) |
118 | | difrp 12768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℝ ∧ 𝑛
∈ ℝ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈
ℝ+)) |
119 | 116, 117,
118 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) → (1
< 𝑛 ↔ (𝑛 − 1) ∈
ℝ+)) |
120 | 115, 119 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑛 − 1) ∈
ℝ+) |
121 | 120 | relogcld 25778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(log‘(𝑛 − 1))
∈ ℝ) |
122 | 121 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(log‘(𝑛 − 1))
∈ ℂ) |
123 | 112, 122 | mulcld 10995 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑛 ·
(log‘(𝑛 − 1)))
∈ ℂ) |
124 | 114, 123,
122 | subsubd 11360 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 ·
(log‘𝑛)) −
((𝑛 ·
(log‘(𝑛 − 1)))
− (log‘(𝑛
− 1)))) = (((𝑛
· (log‘𝑛))
− (𝑛 ·
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1)))) |
125 | | rpre 12738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℝ) |
126 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑛 → (𝑎 ∈ ℝ+ ↔ 𝑛 ∈
ℝ+)) |
127 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑛 → 𝑎 = 𝑛) |
128 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛)) |
129 | 127, 128 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛))) |
130 | 126, 129 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0)) |
131 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 · (log‘𝑛)) ∈ V |
132 | | c0ex 10969 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
V |
133 | 131, 132 | ifex 4509 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑛 ∈ ℝ+,
(𝑛 ·
(log‘𝑛)), 0) ∈
V |
134 | 130, 84, 133 | fvmpt 6875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℝ → (𝑇‘𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0)) |
135 | 125, 134 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℝ+
→ (𝑇‘𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0)) |
136 | | iftrue 4465 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℝ+
→ if(𝑛 ∈
ℝ+, (𝑛
· (log‘𝑛)), 0)
= (𝑛 ·
(log‘𝑛))) |
137 | 135, 136 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℝ+
→ (𝑇‘𝑛) = (𝑛 · (log‘𝑛))) |
138 | 111, 137 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑇‘𝑛) = (𝑛 · (log‘𝑛))) |
139 | | rpre 12738 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 − 1) ∈
ℝ+ → (𝑛 − 1) ∈ ℝ) |
140 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (𝑛 − 1) → (𝑎 ∈ ℝ+ ↔ (𝑛 − 1) ∈
ℝ+)) |
141 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (𝑛 − 1) → 𝑎 = (𝑛 − 1)) |
142 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (𝑛 − 1) → (log‘𝑎) = (log‘(𝑛 − 1))) |
143 | 141, 142 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (𝑛 − 1) → (𝑎 · (log‘𝑎)) = ((𝑛 − 1) · (log‘(𝑛 − 1)))) |
144 | 140, 143 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (𝑛 − 1) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((𝑛 − 1) ∈ ℝ+,
((𝑛 − 1) ·
(log‘(𝑛 − 1))),
0)) |
145 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 − 1) ·
(log‘(𝑛 − 1)))
∈ V |
146 | 145, 132 | ifex 4509 |
. . . . . . . . . . . . . . . . . . 19
⊢ if((𝑛 − 1) ∈
ℝ+, ((𝑛
− 1) · (log‘(𝑛 − 1))), 0) ∈ V |
147 | 144, 84, 146 | fvmpt 6875 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 − 1) ∈ ℝ
→ (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈
ℝ+, ((𝑛
− 1) · (log‘(𝑛 − 1))), 0)) |
148 | 139, 147 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) ∈
ℝ+ → (𝑇‘(𝑛 − 1)) = if((𝑛 − 1) ∈ ℝ+,
((𝑛 − 1) ·
(log‘(𝑛 − 1))),
0)) |
149 | | iftrue 4465 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) ∈
ℝ+ → if((𝑛 − 1) ∈ ℝ+,
((𝑛 − 1) ·
(log‘(𝑛 − 1))),
0) = ((𝑛 − 1)
· (log‘(𝑛
− 1)))) |
150 | 148, 149 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 − 1) ∈
ℝ+ → (𝑇‘(𝑛 − 1)) = ((𝑛 − 1) · (log‘(𝑛 − 1)))) |
151 | 120, 150 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑇‘(𝑛 − 1)) = ((𝑛 − 1) ·
(log‘(𝑛 −
1)))) |
152 | | 1cnd 10970 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) → 1
∈ ℂ) |
153 | 112, 152,
122 | subdird 11432 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 − 1) ·
(log‘(𝑛 − 1)))
= ((𝑛 ·
(log‘(𝑛 − 1)))
− (1 · (log‘(𝑛 − 1))))) |
154 | 122 | mulid2d 10993 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) → (1
· (log‘(𝑛
− 1))) = (log‘(𝑛 − 1))) |
155 | 154 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 ·
(log‘(𝑛 − 1)))
− (1 · (log‘(𝑛 − 1)))) = ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1)))) |
156 | 151, 153,
155 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑇‘(𝑛 − 1)) = ((𝑛 · (log‘(𝑛 − 1))) −
(log‘(𝑛 −
1)))) |
157 | 138, 156 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · (log‘𝑛)) − ((𝑛 · (log‘(𝑛 − 1))) − (log‘(𝑛 − 1))))) |
158 | 112, 113,
122 | subdid 11431 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
= ((𝑛 ·
(log‘𝑛)) −
(𝑛 ·
(log‘(𝑛 −
1))))) |
159 | 158 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1))) = (((𝑛 ·
(log‘𝑛)) −
(𝑛 ·
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1)))) |
160 | 124, 157,
159 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) + (log‘(𝑛 − 1)))) |
161 | 111 | relogcld 25778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(log‘𝑛) ∈
ℝ) |
162 | 161, 121 | resubcld 11403 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((log‘𝑛) −
(log‘(𝑛 − 1)))
∈ ℝ) |
163 | 162 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((log‘𝑛) −
(log‘(𝑛 − 1)))
∈ ℂ) |
164 | 112, 152,
163 | subdird 11432 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 − 1) ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
= ((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
− (1 · ((log‘𝑛) − (log‘(𝑛 − 1)))))) |
165 | 163 | mulid2d 10993 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) → (1
· ((log‘𝑛)
− (log‘(𝑛
− 1)))) = ((log‘𝑛) − (log‘(𝑛 − 1)))) |
166 | 165 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
− (1 · ((log‘𝑛) − (log‘(𝑛 − 1))))) = ((𝑛 · ((log‘𝑛) − (log‘(𝑛 − 1)))) − ((log‘𝑛) − (log‘(𝑛 − 1))))) |
167 | 117, 162 | remulcld 11005 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
∈ ℝ) |
168 | 167 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
∈ ℂ) |
169 | 168, 113,
122 | subsub3d 11362 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
− ((log‘𝑛)
− (log‘(𝑛
− 1)))) = (((𝑛
· ((log‘𝑛)
− (log‘(𝑛
− 1)))) + (log‘(𝑛 − 1))) − (log‘𝑛))) |
170 | 164, 166,
169 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 − 1) ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
= (((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1))) − (log‘𝑛))) |
171 | 112, 152 | npcand 11336 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 − 1) + 1) = 𝑛) |
172 | 171 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(log‘((𝑛 − 1) +
1)) = (log‘𝑛)) |
173 | 172 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((log‘((𝑛 − 1)
+ 1)) − (log‘(𝑛
− 1))) = ((log‘𝑛) − (log‘(𝑛 − 1)))) |
174 | | logdifbnd 26143 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) ∈
ℝ+ → ((log‘((𝑛 − 1) + 1)) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1))) |
175 | 120, 174 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((log‘((𝑛 − 1)
+ 1)) − (log‘(𝑛
− 1))) ≤ (1 / (𝑛
− 1))) |
176 | 173, 175 | eqbrtrrd 5098 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((log‘𝑛) −
(log‘(𝑛 − 1)))
≤ (1 / (𝑛 −
1))) |
177 | | 1red 10976 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) → 1
∈ ℝ) |
178 | 162, 177,
120 | lemuldiv2d 12822 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(((𝑛 − 1) ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
≤ 1 ↔ ((log‘𝑛) − (log‘(𝑛 − 1))) ≤ (1 / (𝑛 − 1)))) |
179 | 176, 178 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 − 1) ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
≤ 1) |
180 | 170, 179 | eqbrtrrd 5098 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
(((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1))) − (log‘𝑛))
≤ 1) |
181 | 167, 121 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1))) ∈ ℝ) |
182 | 181, 161,
177 | lesubadd2d 11574 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1))) − (log‘𝑛))
≤ 1 ↔ ((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1))) ≤ ((log‘𝑛) +
1))) |
183 | 180, 182 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑛 ·
((log‘𝑛) −
(log‘(𝑛 − 1))))
+ (log‘(𝑛 −
1))) ≤ ((log‘𝑛) +
1)) |
184 | 160, 183 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 < 𝑛) →
((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1)) |
185 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (𝑇‘𝑛) = (𝑇‘1)) |
186 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 1 → 𝑎 = 1) |
187 | 186, 3 | eqeltrdi 2847 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 1 → 𝑎 ∈ ℝ+) |
188 | 187 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 1 → if(𝑎 ∈ ℝ+,
(𝑎 ·
(log‘𝑎)), 0) = (𝑎 · (log‘𝑎))) |
189 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 1 → (log‘𝑎) =
(log‘1)) |
190 | | log1 25741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(log‘1) = 0 |
191 | 189, 190 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 1 → (log‘𝑎) = 0) |
192 | 186, 191 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 1 → (𝑎 · (log‘𝑎)) = (1 · 0)) |
193 | | ax-1cn 10929 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℂ |
194 | 193 | mul01i 11165 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1
· 0) = 0 |
195 | 192, 194 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 1 → (𝑎 · (log‘𝑎)) = 0) |
196 | 188, 195 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 1 → if(𝑎 ∈ ℝ+,
(𝑎 ·
(log‘𝑎)), 0) =
0) |
197 | 196, 84, 132 | fvmpt 6875 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
ℝ → (𝑇‘1)
= 0) |
198 | 116, 197 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇‘1) = 0 |
199 | 185, 198 | eqtrdi 2794 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (𝑇‘𝑛) = 0) |
200 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑛 − 1) = (1 − 1)) |
201 | | 1m1e0 12045 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1
− 1) = 0 |
202 | 200, 201 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (𝑛 − 1) = 0) |
203 | 202 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = (𝑇‘0)) |
204 | | 0re 10977 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
205 | | rpne0 12746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ ℝ+
→ 𝑎 ≠
0) |
206 | 205 | necon2bi 2974 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 0 → ¬ 𝑎 ∈
ℝ+) |
207 | 206 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 0 → if(𝑎 ∈ ℝ+,
(𝑎 ·
(log‘𝑎)), 0) =
0) |
208 | 207, 84, 132 | fvmpt 6875 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℝ → (𝑇‘0)
= 0) |
209 | 204, 208 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇‘0) = 0 |
210 | 203, 209 | eqtrdi 2794 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (𝑇‘(𝑛 − 1)) = 0) |
211 | 199, 210 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) = (0 −
0)) |
212 | | 0m0e0 12093 |
. . . . . . . . . . . . . . 15
⊢ (0
− 0) = 0 |
213 | 211, 212 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) = 0) |
214 | 213 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢ (1 =
𝑛 → ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) = 0) |
215 | 214 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 = 𝑛) → ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) = 0) |
216 | | 0red 10978 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ∈ ℝ) |
217 | 28 | nnge1d 12021 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ 𝑛) |
218 | 87, 217 | logge0d 25785 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (log‘𝑛)) |
219 | 35 | lep1d 11906 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ≤
((log‘𝑛) +
1)) |
220 | 216, 35, 37, 218, 219 | letrd 11132 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((log‘𝑛) + 1)) |
221 | 220 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 = 𝑛) → 0 ≤
((log‘𝑛) +
1)) |
222 | 215, 221 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 1 = 𝑛) → ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1)) |
223 | | elfzle1 13259 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 1 ≤ 𝑛) |
224 | 223 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ 𝑛) |
225 | 36, 87 | leloed 11118 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 ≤ 𝑛 ↔ (1
< 𝑛 ∨ 1 = 𝑛))) |
226 | 224, 225 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 < 𝑛 ∨ 1 =
𝑛)) |
227 | 184, 222,
226 | mpjaodan 956 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))) ≤ ((log‘𝑛) + 1)) |
228 | 100, 37, 34, 110, 227 | lemul2ad 11915 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) |
229 | 25, 101, 38, 228 | fsumle 15511 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1))) |
230 | 102, 75, 74, 109, 229 | lemul2ad 11915 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))))) ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) |
231 | 103, 76, 49, 230 | lesub2dd 11592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) ≤ (((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1))))))) |
232 | 77, 104, 10, 231 | lediv1dd 12830 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) |
233 | 232 | adantrr 714 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) ≤ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) |
234 | 82, 86, 105, 78, 233 | lo1le 15363 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥)) ∈ ≤𝑂(1)) |
235 | 106 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℝ+) |
236 | | pntrlog2bndlem5.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
237 | 235, 236 | rpmulcld 12788 |
. . . . . . 7
⊢ (𝜑 → (2 · 𝐵) ∈
ℝ+) |
238 | 237 | rpred 12772 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐵) ∈
ℝ) |
239 | 238 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
𝐵) ∈
ℝ) |
240 | 5, 22 | rerpdivcld 12803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 /
(log‘𝑥)) ∈
ℝ) |
241 | 5, 240 | readdcld 11004 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 + (1 /
(log‘𝑥))) ∈
ℝ) |
242 | | ioossre 13140 |
. . . . . 6
⊢
(1(,)+∞) ⊆ ℝ |
243 | | lo1const 15330 |
. . . . . 6
⊢
(((1(,)+∞) ⊆ ℝ ∧ (2 · 𝐵) ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦ (2 ·
𝐵)) ∈
≤𝑂(1)) |
244 | 242, 238,
243 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (2 ·
𝐵)) ∈
≤𝑂(1)) |
245 | | lo1const 15330 |
. . . . . . 7
⊢
(((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℝ) → (𝑥 ∈ (1(,)+∞) ↦
1) ∈ ≤𝑂(1)) |
246 | 242, 82, 245 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈
≤𝑂(1)) |
247 | | divlogrlim 25790 |
. . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 |
248 | | rlimo1 15326 |
. . . . . . . 8
⊢ ((𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
𝑂(1)) |
249 | 247, 248 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
𝑂(1)) |
250 | 240, 249 | o1lo1d 15248 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
≤𝑂(1)) |
251 | 5, 240, 246, 250 | lo1add 15336 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 /
(log‘𝑥)))) ∈
≤𝑂(1)) |
252 | 237 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
𝐵) ∈
ℝ+) |
253 | 252 | rpge0d 12776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (2
· 𝐵)) |
254 | 239, 241,
244, 251, 253 | lo1mul 15337 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((2 ·
𝐵) · (1 + (1 /
(log‘𝑥))))) ∈
≤𝑂(1)) |
255 | 239, 241 | remulcld 11005 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
𝐵) · (1 + (1 /
(log‘𝑥)))) ∈
ℝ) |
256 | 79, 10 | rerpdivcld 12803 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ) |
257 | 18, 5 | readdcld 11004 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℝ) |
258 | 236 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℝ+) |
259 | 258 | rpred 12772 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℝ) |
260 | 257, 259 | remulcld 11005 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1)
· 𝐵) ∈
ℝ) |
261 | 28 | nnrecred 12024 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℝ) |
262 | 25, 261 | fsumrecl 15446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ∈
ℝ) |
263 | 262, 259 | remulcld 11005 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) · 𝐵) ∈
ℝ) |
264 | 34, 26 | rerpdivcld 12803 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ∈ ℝ) |
265 | 259 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐵 ∈
ℝ) |
266 | 261, 265 | remulcld 11005 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((1 / 𝑛) ·
𝐵) ∈
ℝ) |
267 | 30 | rpcnd 12774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℂ) |
268 | 30 | rpne0d 12777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ≠ 0) |
269 | 33, 267, 268 | absdivd 15167 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛)))) |
270 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
271 | 270, 28 | nndivred 12027 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
272 | 30 | rpge0d 12776 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝑥 / 𝑛)) |
273 | 271, 272 | absidd 15134 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑥 /
𝑛)) = (𝑥 / 𝑛)) |
274 | 273 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛))) |
275 | 269, 274 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛))) |
276 | 46 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
277 | 87 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℂ) |
278 | 47 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ≠
0) |
279 | 28 | nnne0d 12023 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≠
0) |
280 | 43, 276, 277, 278, 279 | divdiv2d 11783 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥)) |
281 | 43, 277, 276, 278 | div23d 11788 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((abs‘(𝑅‘(𝑥 / 𝑛))) · 𝑛) / 𝑥) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛)) |
282 | 275, 280,
281 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛)) |
283 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 / 𝑛) → (𝑅‘𝑦) = (𝑅‘(𝑥 / 𝑛))) |
284 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛)) |
285 | 283, 284 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 / 𝑛) → ((𝑅‘𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) |
286 | 285 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅‘𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))) |
287 | 286 | breq1d 5084 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)) |
288 | | pntrlog2bndlem5.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑦 ∈ ℝ+
(abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
289 | 288 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ∀𝑦 ∈
ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
290 | 287, 289,
30 | rspcdva 3562 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵) |
291 | 282, 290 | eqbrtrrd 5098 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵) |
292 | 264, 265,
29 | lemuldivd 12821 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) · 𝑛) ≤ 𝐵 ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛))) |
293 | 291, 292 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (𝐵 / 𝑛)) |
294 | 265 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐵 ∈
ℂ) |
295 | 294, 277,
279 | divrec2d 11755 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐵 / 𝑛) = ((1 / 𝑛) · 𝐵)) |
296 | 293, 295 | breqtrd 5100 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ ((1 / 𝑛) · 𝐵)) |
297 | 25, 264, 266, 296 | fsumle 15511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵)) |
298 | 25, 46, 43, 47 | fsumdivc 15498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)) |
299 | 258 | rpcnd 12774 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℂ) |
300 | 261 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℂ) |
301 | 25, 299, 300 | fsummulc1 15497 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) · 𝐵) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 / 𝑛) · 𝐵)) |
302 | 297, 298,
301 | 3brtr4d 5106 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) · 𝐵)) |
303 | 258 | rpge0d 12776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵) |
304 | | harmonicubnd 26159 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
305 | 2, 9, 304 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
306 | 262, 257,
259, 303, 305 | lemul1ad 11914 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) · 𝐵) ≤ (((log‘𝑥) + 1) · 𝐵)) |
307 | 256, 263,
260, 302, 306 | letrd 11132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥) ≤ (((log‘𝑥) + 1) · 𝐵)) |
308 | 256, 260,
74, 109, 307 | lemul2ad 11915 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥)) ≤ ((2 / (log‘𝑥)) · (((log‘𝑥) + 1) · 𝐵))) |
309 | 24, 44, 46, 47 | divassd 11786 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛))) / 𝑥))) |
310 | 241 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 + (1 /
(log‘𝑥))) ∈
ℂ) |
311 | 21, 299, 310 | mul32d 11185 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
𝐵) · (1 + (1 /
(log‘𝑥)))) = ((2
· (1 + (1 / (log‘𝑥)))) · 𝐵)) |
312 | | 1cnd 10970 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℂ) |
313 | 19, 312, 19, 23 | divdird 11789 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1) /
(log‘𝑥)) =
(((log‘𝑥) /
(log‘𝑥)) + (1 /
(log‘𝑥)))) |
314 | 19, 23 | dividd 11749 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) /
(log‘𝑥)) =
1) |
315 | 314 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) /
(log‘𝑥)) + (1 /
(log‘𝑥))) = (1 + (1 /
(log‘𝑥)))) |
316 | 313, 315 | eqtr2d 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 + (1 /
(log‘𝑥))) =
(((log‘𝑥) + 1) /
(log‘𝑥))) |
317 | 316 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (1
+ (1 / (log‘𝑥)))) =
(2 · (((log‘𝑥)
+ 1) / (log‘𝑥)))) |
318 | 19, 312 | addcld 10994 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℂ) |
319 | 21, 19, 318, 23 | div32d 11774 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
((log‘𝑥) + 1)) = (2
· (((log‘𝑥) +
1) / (log‘𝑥)))) |
320 | 317, 319 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (1
+ (1 / (log‘𝑥)))) =
((2 / (log‘𝑥))
· ((log‘𝑥) +
1))) |
321 | 320 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
(1 + (1 / (log‘𝑥))))
· 𝐵) = (((2 /
(log‘𝑥)) ·
((log‘𝑥) + 1))
· 𝐵)) |
322 | 24, 318, 299 | mulassd 10998 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
((log‘𝑥) + 1))
· 𝐵) = ((2 /
(log‘𝑥)) ·
(((log‘𝑥) + 1)
· 𝐵))) |
323 | 311, 321,
322 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
𝐵) · (1 + (1 /
(log‘𝑥)))) = ((2 /
(log‘𝑥)) ·
(((log‘𝑥) + 1)
· 𝐵))) |
324 | 308, 309,
323 | 3brtr4d 5106 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥))))) |
325 | 324 | adantrr 714 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((2 · 𝐵) · (1 + (1 / (log‘𝑥))))) |
326 | 82, 254, 255, 81, 325 | lo1le 15363 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) |
327 | 78, 81, 234, 326 | lo1add 15336 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((log‘𝑛) + 1)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(𝑅‘(𝑥 / 𝑛)))) / 𝑥))) ∈ ≤𝑂(1)) |
328 | 71, 327 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) |