| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jumpncnp | Structured version Visualization version GIF version | ||
| Description: Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| jumpncnp.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| jumpncnp.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| jumpncnp.3 | ⊢ 𝐽 = (topGen‘ran (,)) |
| jumpncnp.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| jumpncnp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| jumpncnp.lpt1 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
| jumpncnp.lpt2 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
| jumpncnp.8 | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| jumpncnp.9 | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| jumpncnp.lner | ⊢ (𝜑 → 𝐿 ≠ 𝑅) |
| Ref | Expression |
|---|---|
| jumpncnp | ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jumpncnp.k | . . . . 5 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 2 | jumpncnp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 3 | jumpncnp.3 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 4 | jumpncnp.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 5 | jumpncnp.lpt1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) | |
| 6 | jumpncnp.lpt2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) | |
| 7 | jumpncnp.8 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) | |
| 8 | jumpncnp.9 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) | |
| 9 | jumpncnp.lner | . . . . 5 ⊢ (𝜑 → 𝐿 ≠ 𝑅) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | limclner 45642 | . . . 4 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) |
| 11 | ne0i 4292 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) | |
| 12 | 11 | necon2bi 2955 | . . . 4 ⊢ ((𝐹 limℂ 𝐵) = ∅ → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| 13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| 14 | 13 | intnand 488 | . 2 ⊢ (𝜑 → ¬ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
| 15 | ax-resscn 11066 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 16 | jumpncnp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 17 | eqid 2729 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 18 | tgioo4 24691 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 19 | 3, 18 | eqtri 2752 | . . . 4 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
| 20 | 17, 19 | cnplimc 25786 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ 𝐵 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
| 21 | 15, 16, 20 | sylancr 587 | . 2 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
| 22 | 14, 21 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ran crn 5620 ↾ cres 5621 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 +∞cpnf 11146 -∞cmnf 11147 (,)cioo 13248 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21261 limPtclp 23019 CnP ccnp 23110 limℂ climc 25761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-cnp 23113 df-xms 24206 df-ms 24207 df-limc 25765 |
| This theorem is referenced by: fouriersw 46222 |
| Copyright terms: Public domain | W3C validator |