Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > jumpncnp | Structured version Visualization version GIF version |
Description: Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
jumpncnp.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
jumpncnp.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
jumpncnp.3 | ⊢ 𝐽 = (topGen‘ran (,)) |
jumpncnp.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
jumpncnp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
jumpncnp.lpt1 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
jumpncnp.lpt2 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
jumpncnp.8 | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
jumpncnp.9 | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
jumpncnp.lner | ⊢ (𝜑 → 𝐿 ≠ 𝑅) |
Ref | Expression |
---|---|
jumpncnp | ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jumpncnp.k | . . . . 5 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
2 | jumpncnp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | jumpncnp.3 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
4 | jumpncnp.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
5 | jumpncnp.lpt1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) | |
6 | jumpncnp.lpt2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) | |
7 | jumpncnp.8 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) | |
8 | jumpncnp.9 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) | |
9 | jumpncnp.lner | . . . . 5 ⊢ (𝜑 → 𝐿 ≠ 𝑅) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | limclner 43442 | . . . 4 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) |
11 | ne0i 4279 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) | |
12 | 11 | necon2bi 2972 | . . . 4 ⊢ ((𝐹 limℂ 𝐵) = ∅ → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
14 | 13 | intnand 489 | . 2 ⊢ (𝜑 → ¬ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
15 | ax-resscn 11008 | . . 3 ⊢ ℝ ⊆ ℂ | |
16 | jumpncnp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
17 | eqid 2737 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
18 | 17 | tgioo2 24049 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
19 | 3, 18 | eqtri 2765 | . . . 4 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
20 | 17, 19 | cnplimc 25134 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ 𝐵 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
21 | 15, 16, 20 | sylancr 587 | . 2 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
22 | 14, 21 | mtbird 324 | 1 ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∩ cin 3896 ⊆ wss 3897 ∅c0 4267 ran crn 5609 ↾ cres 5610 ⟶wf 6462 ‘cfv 6466 (class class class)co 7317 ℂcc 10949 ℝcr 10950 +∞cpnf 11086 -∞cmnf 11087 (,)cioo 13159 ↾t crest 17208 TopOpenctopn 17209 topGenctg 17225 ℂfldccnfld 20680 limPtclp 22368 CnP ccnp 22459 limℂ climc 25109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fi 9247 df-sup 9278 df-inf 9279 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-q 12769 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-ioo 13163 df-fz 13320 df-seq 13802 df-exp 13863 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-struct 16925 df-slot 16960 df-ndx 16972 df-base 16990 df-plusg 17052 df-mulr 17053 df-starv 17054 df-tset 17058 df-ple 17059 df-ds 17061 df-unif 17062 df-rest 17210 df-topn 17211 df-topgen 17231 df-psmet 20672 df-xmet 20673 df-met 20674 df-bl 20675 df-mopn 20676 df-cnfld 20681 df-top 22126 df-topon 22143 df-topsp 22165 df-bases 22179 df-cld 22253 df-ntr 22254 df-cls 22255 df-nei 22332 df-lp 22370 df-cnp 22462 df-xms 23556 df-ms 23557 df-limc 25113 |
This theorem is referenced by: fouriersw 44022 |
Copyright terms: Public domain | W3C validator |