| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jumpncnp | Structured version Visualization version GIF version | ||
| Description: Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| jumpncnp.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| jumpncnp.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| jumpncnp.3 | ⊢ 𝐽 = (topGen‘ran (,)) |
| jumpncnp.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| jumpncnp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| jumpncnp.lpt1 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
| jumpncnp.lpt2 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
| jumpncnp.8 | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
| jumpncnp.9 | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
| jumpncnp.lner | ⊢ (𝜑 → 𝐿 ≠ 𝑅) |
| Ref | Expression |
|---|---|
| jumpncnp | ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jumpncnp.k | . . . . 5 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 2 | jumpncnp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 3 | jumpncnp.3 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 4 | jumpncnp.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 5 | jumpncnp.lpt1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) | |
| 6 | jumpncnp.lpt2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) | |
| 7 | jumpncnp.8 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) | |
| 8 | jumpncnp.9 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) | |
| 9 | jumpncnp.lner | . . . . 5 ⊢ (𝜑 → 𝐿 ≠ 𝑅) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | limclner 45759 | . . . 4 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) |
| 11 | ne0i 4288 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) | |
| 12 | 11 | necon2bi 2958 | . . . 4 ⊢ ((𝐹 limℂ 𝐵) = ∅ → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| 13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| 14 | 13 | intnand 488 | . 2 ⊢ (𝜑 → ¬ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
| 15 | ax-resscn 11063 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 16 | jumpncnp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 17 | eqid 2731 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 18 | tgioo4 24720 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 19 | 3, 18 | eqtri 2754 | . . . 4 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
| 20 | 17, 19 | cnplimc 25815 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ 𝐵 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
| 21 | 15, 16, 20 | sylancr 587 | . 2 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
| 22 | 14, 21 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ran crn 5615 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 +∞cpnf 11143 -∞cmnf 11144 (,)cioo 13245 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21291 limPtclp 23049 CnP ccnp 23140 limℂ climc 25790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-cnp 23143 df-xms 24235 df-ms 24236 df-limc 25794 |
| This theorem is referenced by: fouriersw 46339 |
| Copyright terms: Public domain | W3C validator |