Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jumpncnp Structured version   Visualization version   GIF version

Theorem jumpncnp 41609
Description: Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
jumpncnp.k 𝐾 = (TopOpen‘ℂfld)
jumpncnp.a (𝜑𝐴 ⊆ ℝ)
jumpncnp.3 𝐽 = (topGen‘ran (,))
jumpncnp.f (𝜑𝐹:𝐴⟶ℂ)
jumpncnp.b (𝜑𝐵 ∈ ℝ)
jumpncnp.lpt1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
jumpncnp.lpt2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
jumpncnp.8 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
jumpncnp.9 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
jumpncnp.lner (𝜑𝐿𝑅)
Assertion
Ref Expression
jumpncnp (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵))

Proof of Theorem jumpncnp
StepHypRef Expression
1 jumpncnp.k . . . . 5 𝐾 = (TopOpen‘ℂfld)
2 jumpncnp.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
3 jumpncnp.3 . . . . 5 𝐽 = (topGen‘ran (,))
4 jumpncnp.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
5 jumpncnp.lpt1 . . . . 5 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))))
6 jumpncnp.lpt2 . . . . 5 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞))))
7 jumpncnp.8 . . . . 5 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
8 jumpncnp.9 . . . . 5 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
9 jumpncnp.lner . . . . 5 (𝜑𝐿𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9limclner 41361 . . . 4 (𝜑 → (𝐹 lim 𝐵) = ∅)
11 ne0i 4187 . . . . 5 ((𝐹𝐵) ∈ (𝐹 lim 𝐵) → (𝐹 lim 𝐵) ≠ ∅)
1211necon2bi 2998 . . . 4 ((𝐹 lim 𝐵) = ∅ → ¬ (𝐹𝐵) ∈ (𝐹 lim 𝐵))
1310, 12syl 17 . . 3 (𝜑 → ¬ (𝐹𝐵) ∈ (𝐹 lim 𝐵))
1413intnand 481 . 2 (𝜑 → ¬ (𝐹:ℝ⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
15 ax-resscn 10392 . . 3 ℝ ⊆ ℂ
16 jumpncnp.b . . 3 (𝜑𝐵 ∈ ℝ)
17 eqid 2779 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1817tgioo2 23114 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
193, 18eqtri 2803 . . . 4 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ)
2017, 19cnplimc 24188 . . 3 ((ℝ ⊆ ℂ ∧ 𝐵 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
2115, 16, 20sylancr 578 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
2214, 21mtbird 317 1 (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2968  cin 3829  wss 3830  c0 4179  ran crn 5408  cres 5409  wf 6184  cfv 6188  (class class class)co 6976  cc 10333  cr 10334  +∞cpnf 10471  -∞cmnf 10472  (,)cioo 12554  t crest 16550  TopOpenctopn 16551  topGenctg 16567  fldccnfld 20247  limPtclp 21446   CnP ccnp 21537   lim climc 24163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fi 8670  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-fz 12709  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-plusg 16434  df-mulr 16435  df-starv 16436  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-rest 16552  df-topn 16553  df-topgen 16573  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-nei 21410  df-lp 21448  df-cnp 21540  df-xms 22633  df-ms 22634  df-limc 24167
This theorem is referenced by:  fouriersw  41945
  Copyright terms: Public domain W3C validator