| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprel | Structured version Visualization version GIF version | ||
| Description: A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) |
| Ref | Expression |
|---|---|
| fpprel | ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpprmod 47732 | . . . 4 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |
| 2 | 1 | eleq2d 2815 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)})) |
| 3 | neleq1 3036 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∉ ℙ ↔ 𝑋 ∉ ℙ)) | |
| 4 | oveq1 7397 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1)) | |
| 5 | 4 | oveq2d 7406 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑁↑(𝑥 − 1)) = (𝑁↑(𝑋 − 1))) |
| 6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 7 | 5, 6 | oveq12d 7408 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑁↑(𝑥 − 1)) mod 𝑥) = ((𝑁↑(𝑋 − 1)) mod 𝑋)) |
| 8 | 7 | eqeq1d 2732 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)) |
| 9 | 3, 8 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1) ↔ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
| 10 | 9 | elrab 3662 | . . 3 ⊢ (𝑋 ∈ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)} ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
| 11 | 2, 10 | bitrdi 287 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))) |
| 12 | 3anass 1094 | . 2 ⊢ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |
| 13 | 11, 12 | bitr4di 289 | 1 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 {crab 3408 ‘cfv 6514 (class class class)co 7390 1c1 11076 − cmin 11412 ℕcn 12193 4c4 12250 ℤ≥cuz 12800 mod cmo 13838 ↑cexp 14033 ℙcprime 16648 FPPr cfppr 47729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-dvds 16230 df-fppr 47730 |
| This theorem is referenced by: fpprnn 47735 fppr2odd 47736 341fppr2 47739 4fppr1 47740 9fppr8 47742 fpprwppr 47744 fpprwpprb 47745 fpprel2 47746 |
| Copyright terms: Public domain | W3C validator |