![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprel | Structured version Visualization version GIF version |
Description: A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprel | ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpprmod 47067 | . . . 4 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |
2 | 1 | eleq2d 2815 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)})) |
3 | neleq1 3049 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∉ ℙ ↔ 𝑋 ∉ ℙ)) | |
4 | oveq1 7427 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1)) | |
5 | 4 | oveq2d 7436 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑁↑(𝑥 − 1)) = (𝑁↑(𝑋 − 1))) |
6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
7 | 5, 6 | oveq12d 7438 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑁↑(𝑥 − 1)) mod 𝑥) = ((𝑁↑(𝑋 − 1)) mod 𝑋)) |
8 | 7 | eqeq1d 2730 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)) |
9 | 3, 8 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1) ↔ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
10 | 9 | elrab 3682 | . . 3 ⊢ (𝑋 ∈ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)} ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
11 | 2, 10 | bitrdi 287 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))) |
12 | 3anass 1093 | . 2 ⊢ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |
13 | 11, 12 | bitr4di 289 | 1 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∉ wnel 3043 {crab 3429 ‘cfv 6548 (class class class)co 7420 1c1 11140 − cmin 11475 ℕcn 12243 4c4 12300 ℤ≥cuz 12853 mod cmo 13867 ↑cexp 14059 ℙcprime 16642 FPPr cfppr 47064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-dvds 16232 df-fppr 47065 |
This theorem is referenced by: fpprnn 47070 fppr2odd 47071 341fppr2 47074 4fppr1 47075 9fppr8 47077 fpprwppr 47079 fpprwpprb 47080 fpprel2 47081 |
Copyright terms: Public domain | W3C validator |