Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprel | Structured version Visualization version GIF version |
Description: A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprel | ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpprmod 45067 | . . . 4 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |
2 | 1 | eleq2d 2824 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ 𝑋 ∈ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)})) |
3 | neleq1 3053 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∉ ℙ ↔ 𝑋 ∉ ℙ)) | |
4 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1)) | |
5 | 4 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑁↑(𝑥 − 1)) = (𝑁↑(𝑋 − 1))) |
6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
7 | 5, 6 | oveq12d 7273 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑁↑(𝑥 − 1)) mod 𝑥) = ((𝑁↑(𝑋 − 1)) mod 𝑋)) |
8 | 7 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)) |
9 | 3, 8 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1) ↔ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
10 | 9 | elrab 3617 | . . 3 ⊢ (𝑋 ∈ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)} ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
11 | 2, 10 | bitrdi 286 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))) |
12 | 3anass 1093 | . 2 ⊢ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ (𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |
13 | 11, 12 | bitr4di 288 | 1 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 {crab 3067 ‘cfv 6418 (class class class)co 7255 1c1 10803 − cmin 11135 ℕcn 11903 4c4 11960 ℤ≥cuz 12511 mod cmo 13517 ↑cexp 13710 ℙcprime 16304 FPPr cfppr 45064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-dvds 15892 df-fppr 45065 |
This theorem is referenced by: fpprnn 45070 fppr2odd 45071 341fppr2 45074 4fppr1 45075 9fppr8 45077 fpprwppr 45079 fpprwpprb 45080 fpprel2 45081 |
Copyright terms: Public domain | W3C validator |