| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resqrtthlem | Structured version Visualization version GIF version | ||
| Description: Lemma for resqrtth 15295. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| Ref | Expression |
|---|---|
| resqrtthlem | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 11246 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | sqrtval 15277 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | |
| 3 | 2 | eqcomd 2742 | . . . 4 ⊢ (𝐴 ∈ ℂ → (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴)) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴)) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴)) |
| 6 | resqrtcl 15293 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | |
| 7 | 6 | recnd 11290 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ) |
| 8 | resqreu 15292 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 9 | oveq1 7439 | . . . . . 6 ⊢ (𝑥 = (√‘𝐴) → (𝑥↑2) = ((√‘𝐴)↑2)) | |
| 10 | 9 | eqeq1d 2738 | . . . . 5 ⊢ (𝑥 = (√‘𝐴) → ((𝑥↑2) = 𝐴 ↔ ((√‘𝐴)↑2) = 𝐴)) |
| 11 | fveq2 6905 | . . . . . 6 ⊢ (𝑥 = (√‘𝐴) → (ℜ‘𝑥) = (ℜ‘(√‘𝐴))) | |
| 12 | 11 | breq2d 5154 | . . . . 5 ⊢ (𝑥 = (√‘𝐴) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐴)))) |
| 13 | oveq2 7440 | . . . . . 6 ⊢ (𝑥 = (√‘𝐴) → (i · 𝑥) = (i · (√‘𝐴))) | |
| 14 | neleq1 3051 | . . . . . 6 ⊢ ((i · 𝑥) = (i · (√‘𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐴)) ∉ ℝ+)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝑥 = (√‘𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐴)) ∉ ℝ+)) |
| 16 | 10, 12, 15 | 3anbi123d 1437 | . . . 4 ⊢ (𝑥 = (√‘𝐴) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+))) |
| 17 | 16 | riota2 7414 | . . 3 ⊢ (((√‘𝐴) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → ((((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+) ↔ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴))) |
| 18 | 7, 8, 17 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+) ↔ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴))) |
| 19 | 5, 18 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∉ wnel 3045 ∃!wreu 3377 class class class wbr 5142 ‘cfv 6560 ℩crio 7388 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 ici 11158 · cmul 11161 ≤ cle 11297 2c2 12322 ℝ+crp 13035 ↑cexp 14103 ℜcre 15137 √csqrt 15273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 |
| This theorem is referenced by: resqrtth 15295 sqrtge0 15297 |
| Copyright terms: Public domain | W3C validator |