MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrtthlem Structured version   Visualization version   GIF version

Theorem resqrtthlem 15165
Description: Lemma for resqrtth 15166. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrtthlem ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+))

Proof of Theorem resqrtthlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 recn 11105 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 sqrtval 15148 . . . . 5 (𝐴 ∈ ℂ → (√‘𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
32eqcomd 2739 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴))
41, 3syl 17 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴))
54adantr 480 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴))
6 resqrtcl 15164 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
76recnd 11149 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
8 resqreu 15163 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
9 oveq1 7361 . . . . . 6 (𝑥 = (√‘𝐴) → (𝑥↑2) = ((√‘𝐴)↑2))
109eqeq1d 2735 . . . . 5 (𝑥 = (√‘𝐴) → ((𝑥↑2) = 𝐴 ↔ ((√‘𝐴)↑2) = 𝐴))
11 fveq2 6830 . . . . . 6 (𝑥 = (√‘𝐴) → (ℜ‘𝑥) = (ℜ‘(√‘𝐴)))
1211breq2d 5107 . . . . 5 (𝑥 = (√‘𝐴) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐴))))
13 oveq2 7362 . . . . . 6 (𝑥 = (√‘𝐴) → (i · 𝑥) = (i · (√‘𝐴)))
14 neleq1 3039 . . . . . 6 ((i · 𝑥) = (i · (√‘𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐴)) ∉ ℝ+))
1513, 14syl 17 . . . . 5 (𝑥 = (√‘𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐴)) ∉ ℝ+))
1610, 12, 153anbi123d 1438 . . . 4 (𝑥 = (√‘𝐴) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)))
1716riota2 7336 . . 3 (((√‘𝐴) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → ((((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴)))
187, 8, 17syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴)))
195, 18mpbird 257 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wnel 3033  ∃!wreu 3345   class class class wbr 5095  cfv 6488  crio 7310  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  ici 11017   · cmul 11020  cle 11156  2c2 12189  +crp 12894  cexp 13972  cre 15008  csqrt 15144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146
This theorem is referenced by:  resqrtth  15166  sqrtge0  15168
  Copyright terms: Public domain W3C validator