![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resqrtthlem | Structured version Visualization version GIF version |
Description: Lemma for resqrtth 15208. (Contributed by Mario Carneiro, 9-Jul-2013.) |
Ref | Expression |
---|---|
resqrtthlem | โข ((๐ด โ โ โง 0 โค ๐ด) โ (((โโ๐ด)โ2) = ๐ด โง 0 โค (โโ(โโ๐ด)) โง (i ยท (โโ๐ด)) โ โ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11202 | . . . 4 โข (๐ด โ โ โ ๐ด โ โ) | |
2 | sqrtval 15190 | . . . . 5 โข (๐ด โ โ โ (โโ๐ด) = (โฉ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+))) | |
3 | 2 | eqcomd 2732 | . . . 4 โข (๐ด โ โ โ (โฉ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) = (โโ๐ด)) |
4 | 1, 3 | syl 17 | . . 3 โข (๐ด โ โ โ (โฉ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) = (โโ๐ด)) |
5 | 4 | adantr 480 | . 2 โข ((๐ด โ โ โง 0 โค ๐ด) โ (โฉ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) = (โโ๐ด)) |
6 | resqrtcl 15206 | . . . 4 โข ((๐ด โ โ โง 0 โค ๐ด) โ (โโ๐ด) โ โ) | |
7 | 6 | recnd 11246 | . . 3 โข ((๐ด โ โ โง 0 โค ๐ด) โ (โโ๐ด) โ โ) |
8 | resqreu 15205 | . . 3 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) | |
9 | oveq1 7412 | . . . . . 6 โข (๐ฅ = (โโ๐ด) โ (๐ฅโ2) = ((โโ๐ด)โ2)) | |
10 | 9 | eqeq1d 2728 | . . . . 5 โข (๐ฅ = (โโ๐ด) โ ((๐ฅโ2) = ๐ด โ ((โโ๐ด)โ2) = ๐ด)) |
11 | fveq2 6885 | . . . . . 6 โข (๐ฅ = (โโ๐ด) โ (โโ๐ฅ) = (โโ(โโ๐ด))) | |
12 | 11 | breq2d 5153 | . . . . 5 โข (๐ฅ = (โโ๐ด) โ (0 โค (โโ๐ฅ) โ 0 โค (โโ(โโ๐ด)))) |
13 | oveq2 7413 | . . . . . 6 โข (๐ฅ = (โโ๐ด) โ (i ยท ๐ฅ) = (i ยท (โโ๐ด))) | |
14 | neleq1 3046 | . . . . . 6 โข ((i ยท ๐ฅ) = (i ยท (โโ๐ด)) โ ((i ยท ๐ฅ) โ โ+ โ (i ยท (โโ๐ด)) โ โ+)) | |
15 | 13, 14 | syl 17 | . . . . 5 โข (๐ฅ = (โโ๐ด) โ ((i ยท ๐ฅ) โ โ+ โ (i ยท (โโ๐ด)) โ โ+)) |
16 | 10, 12, 15 | 3anbi123d 1432 | . . . 4 โข (๐ฅ = (โโ๐ด) โ (((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+) โ (((โโ๐ด)โ2) = ๐ด โง 0 โค (โโ(โโ๐ด)) โง (i ยท (โโ๐ด)) โ โ+))) |
17 | 16 | riota2 7387 | . . 3 โข (((โโ๐ด) โ โ โง โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) โ ((((โโ๐ด)โ2) = ๐ด โง 0 โค (โโ(โโ๐ด)) โง (i ยท (โโ๐ด)) โ โ+) โ (โฉ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) = (โโ๐ด))) |
18 | 7, 8, 17 | syl2anc 583 | . 2 โข ((๐ด โ โ โง 0 โค ๐ด) โ ((((โโ๐ด)โ2) = ๐ด โง 0 โค (โโ(โโ๐ด)) โง (i ยท (โโ๐ด)) โ โ+) โ (โฉ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) = (โโ๐ด))) |
19 | 5, 18 | mpbird 257 | 1 โข ((๐ด โ โ โง 0 โค ๐ด) โ (((โโ๐ด)โ2) = ๐ด โง 0 โค (โโ(โโ๐ด)) โง (i ยท (โโ๐ด)) โ โ+)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 395 โง w3a 1084 = wceq 1533 โ wcel 2098 โ wnel 3040 โ!wreu 3368 class class class wbr 5141 โcfv 6537 โฉcrio 7360 (class class class)co 7405 โcc 11110 โcr 11111 0cc0 11112 ici 11114 ยท cmul 11117 โค cle 11253 2c2 12271 โ+crp 12980 โcexp 14032 โcre 15050 โcsqrt 15186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 |
This theorem is referenced by: resqrtth 15208 sqrtge0 15210 |
Copyright terms: Public domain | W3C validator |