MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneg Structured version   Visualization version   GIF version

Theorem sqrtneg 15152
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneg ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (i · (√‘𝐴)))

Proof of Theorem sqrtneg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 recn 11141 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
32negcld 11499 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℂ)
4 sqrtval 15122 . . 3 (-𝐴 ∈ ℂ → (√‘-𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
53, 4syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
6 sqrtneglem 15151 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
7 ax-icn 11110 . . . . 5 i ∈ ℂ
8 resqrtcl 15138 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
98recnd 11183 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
10 mulcl 11135 . . . . 5 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (i · (√‘𝐴)) ∈ ℂ)
117, 9, 10sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (√‘𝐴)) ∈ ℂ)
12 oveq1 7364 . . . . . . . . 9 (𝑥 = (i · (√‘𝐴)) → (𝑥↑2) = ((i · (√‘𝐴))↑2))
1312eqeq1d 2738 . . . . . . . 8 (𝑥 = (i · (√‘𝐴)) → ((𝑥↑2) = -𝐴 ↔ ((i · (√‘𝐴))↑2) = -𝐴))
14 fveq2 6842 . . . . . . . . 9 (𝑥 = (i · (√‘𝐴)) → (ℜ‘𝑥) = (ℜ‘(i · (√‘𝐴))))
1514breq2d 5117 . . . . . . . 8 (𝑥 = (i · (√‘𝐴)) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(i · (√‘𝐴)))))
16 oveq2 7365 . . . . . . . . 9 (𝑥 = (i · (√‘𝐴)) → (i · 𝑥) = (i · (i · (√‘𝐴))))
17 neleq1 3054 . . . . . . . . 9 ((i · 𝑥) = (i · (i · (√‘𝐴))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘𝐴))) ∉ ℝ+))
1816, 17syl 17 . . . . . . . 8 (𝑥 = (i · (√‘𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘𝐴))) ∉ ℝ+))
1913, 15, 183anbi123d 1436 . . . . . . 7 (𝑥 = (i · (√‘𝐴)) → (((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+)))
2019rspcev 3581 . . . . . 6 (((i · (√‘𝐴)) ∈ ℂ ∧ (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
2111, 6, 20syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
22 sqrmo 15136 . . . . . 6 (-𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
233, 22syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
24 reu5 3355 . . . . 5 (∃!𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
2521, 23, 24sylanbrc 583 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
2619riota2 7339 . . . 4 (((i · (√‘𝐴)) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → ((((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (i · (√‘𝐴))))
2711, 25, 26syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (i · (√‘𝐴))))
286, 27mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (i · (√‘𝐴)))
295, 28eqtrd 2776 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (i · (√‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3049  wrex 3073  ∃!wreu 3351  ∃*wrmo 3352   class class class wbr 5105  cfv 6496  crio 7312  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  ici 11053   · cmul 11056  cle 11190  -cneg 11386  2c2 12208  +crp 12915  cexp 13967  cre 14982  csqrt 15118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120
This theorem is referenced by:  sqrtm1  15160  sqrtnegd  15306
  Copyright terms: Public domain W3C validator