MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneg Structured version   Visualization version   GIF version

Theorem sqrtneg 14675
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneg ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (i · (√‘𝐴)))

Proof of Theorem sqrtneg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 recn 10665 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21adantr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
32negcld 11022 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℂ)
4 sqrtval 14644 . . 3 (-𝐴 ∈ ℂ → (√‘-𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
53, 4syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
6 sqrtneglem 14674 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
7 ax-icn 10634 . . . . 5 i ∈ ℂ
8 resqrtcl 14661 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
98recnd 10707 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
10 mulcl 10659 . . . . 5 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (i · (√‘𝐴)) ∈ ℂ)
117, 9, 10sylancr 590 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (√‘𝐴)) ∈ ℂ)
12 oveq1 7157 . . . . . . . . 9 (𝑥 = (i · (√‘𝐴)) → (𝑥↑2) = ((i · (√‘𝐴))↑2))
1312eqeq1d 2760 . . . . . . . 8 (𝑥 = (i · (√‘𝐴)) → ((𝑥↑2) = -𝐴 ↔ ((i · (√‘𝐴))↑2) = -𝐴))
14 fveq2 6658 . . . . . . . . 9 (𝑥 = (i · (√‘𝐴)) → (ℜ‘𝑥) = (ℜ‘(i · (√‘𝐴))))
1514breq2d 5044 . . . . . . . 8 (𝑥 = (i · (√‘𝐴)) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(i · (√‘𝐴)))))
16 oveq2 7158 . . . . . . . . 9 (𝑥 = (i · (√‘𝐴)) → (i · 𝑥) = (i · (i · (√‘𝐴))))
17 neleq1 3060 . . . . . . . . 9 ((i · 𝑥) = (i · (i · (√‘𝐴))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘𝐴))) ∉ ℝ+))
1816, 17syl 17 . . . . . . . 8 (𝑥 = (i · (√‘𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘𝐴))) ∉ ℝ+))
1913, 15, 183anbi123d 1433 . . . . . . 7 (𝑥 = (i · (√‘𝐴)) → (((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+)))
2019rspcev 3541 . . . . . 6 (((i · (√‘𝐴)) ∈ ℂ ∧ (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
2111, 6, 20syl2anc 587 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
22 sqrmo 14659 . . . . . 6 (-𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
233, 22syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
24 reu5 3340 . . . . 5 (∃!𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
2521, 23, 24sylanbrc 586 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
2619riota2 7133 . . . 4 (((i · (√‘𝐴)) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → ((((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (i · (√‘𝐴))))
2711, 25, 26syl2anc 587 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (i · (√‘𝐴))))
286, 27mpbid 235 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℂ ((𝑥↑2) = -𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (i · (√‘𝐴)))
295, 28eqtrd 2793 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (i · (√‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wnel 3055  wrex 3071  ∃!wreu 3072  ∃*wrmo 3073   class class class wbr 5032  cfv 6335  crio 7107  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  ici 10577   · cmul 10580  cle 10714  -cneg 10909  2c2 11729  +crp 12430  cexp 13479  cre 14504  csqrt 14640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642
This theorem is referenced by:  sqrtm1  14683  sqrtnegd  14829
  Copyright terms: Public domain W3C validator