| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resqrtcl | Structured version Visualization version GIF version | ||
| Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| Ref | Expression |
|---|---|
| resqrtcl | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrex 15161 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) | |
| 2 | simp1l 1198 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝐴 ∈ ℝ) | |
| 3 | recn 11105 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 4 | sqrtval 15148 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | |
| 5 | 2, 3, 4 | 3syl 18 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) |
| 6 | simp3r 1203 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑦↑2) = 𝐴) | |
| 7 | simp3l 1202 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ 𝑦) | |
| 8 | rere 15033 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (ℜ‘𝑦) = 𝑦) | |
| 9 | 8 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (ℜ‘𝑦) = 𝑦) |
| 10 | 7, 9 | breqtrrd 5123 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ (ℜ‘𝑦)) |
| 11 | rennim 15150 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (i · 𝑦) ∉ ℝ+) | |
| 12 | 11 | 3ad2ant2 1134 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (i · 𝑦) ∉ ℝ+) |
| 13 | 6, 10, 12 | 3jca 1128 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) |
| 14 | recn 11105 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 15 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℂ) |
| 16 | resqreu 15163 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
| 18 | oveq1 7361 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
| 19 | 18 | eqeq1d 2735 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴)) |
| 20 | fveq2 6830 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦)) | |
| 21 | 20 | breq2d 5107 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝑦))) |
| 22 | oveq2 7362 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦)) | |
| 23 | neleq1 3039 | . . . . . . . . . 10 ⊢ ((i · 𝑥) = (i · 𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+)) | |
| 24 | 22, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+)) |
| 25 | 19, 21, 24 | 3anbi123d 1438 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) |
| 26 | 25 | riota2 7336 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 𝑦)) |
| 27 | 15, 17, 26 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 𝑦)) |
| 28 | 13, 27 | mpbid 232 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 𝑦) |
| 29 | 5, 28 | eqtrd 2768 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = 𝑦) |
| 30 | simp2 1137 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℝ) | |
| 31 | 29, 30 | eqeltrd 2833 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) ∈ ℝ) |
| 32 | 31 | rexlimdv3a 3138 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴) → (√‘𝐴) ∈ ℝ)) |
| 33 | 1, 32 | mpd 15 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 ∃wrex 3057 ∃!wreu 3345 class class class wbr 5095 ‘cfv 6488 ℩crio 7310 (class class class)co 7354 ℂcc 11013 ℝcr 11014 0cc0 11015 ici 11017 · cmul 11020 ≤ cle 11156 2c2 12189 ℝ+crp 12894 ↑cexp 13972 ℜcre 15008 √csqrt 15144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 |
| This theorem is referenced by: resqrtthlem 15165 remsqsqrt 15167 sqrtge0 15168 sqrtgt0 15169 sqrtmul 15170 sqrtle 15171 sqrtlt 15172 sqrt11 15173 rpsqrtcl 15175 sqrtdiv 15176 sqrtneglem 15177 sqrtneg 15178 sqrtsq2 15179 abscl 15189 sqreulem 15271 sqreu 15272 amgm2 15281 sqrtcli 15283 resqrtcld 15329 resqrtcn 26689 loglesqrt 26701 1cubrlem 26781 ftc1anclem3 37758 sqrtpwpw2p 47665 flsqrt 47720 requad1 47749 itsclc0lem1 48884 itsclc0lem2 48885 |
| Copyright terms: Public domain | W3C validator |