MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreu Structured version   Visualization version   GIF version

Theorem sqreu 15399
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqreu (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqreu
StepHypRef Expression
1 abscl 15317 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
21recnd 11289 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
3 subneg 11558 . . . . . . 7 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
42, 3mpancom 688 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
54eqeq1d 2739 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
6 negcl 11508 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
72, 6subeq0ad 11630 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
85, 7bitr3d 281 . . . 4 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
9 ax-icn 11214 . . . . . . 7 i ∈ ℂ
10 absge0 15326 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
111, 10jca 511 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
12 eleq1 2829 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ ↔ -𝐴 ∈ ℝ))
13 breq2 5147 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → (0 ≤ (abs‘𝐴) ↔ 0 ≤ -𝐴))
1412, 13anbi12d 632 . . . . . . . . . . 11 ((abs‘𝐴) = -𝐴 → (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1511, 14imbitrid 244 . . . . . . . . . 10 ((abs‘𝐴) = -𝐴 → (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1615impcom 407 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴))
17 resqrtcl 15292 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (√‘-𝐴) ∈ ℝ)
1816, 17syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℝ)
1918recnd 11289 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℂ)
20 mulcl 11239 . . . . . . 7 ((i ∈ ℂ ∧ (√‘-𝐴) ∈ ℂ) → (i · (√‘-𝐴)) ∈ ℂ)
219, 19, 20sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (i · (√‘-𝐴)) ∈ ℂ)
22 sqrtneglem 15305 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
2316, 22syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
24 negneg 11559 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
2524adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → --𝐴 = 𝐴)
2625eqeq2d 2748 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
27263anbi1d 1442 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ((((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
2823, 27mpbid 232 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
29 oveq1 7438 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (𝑥↑2) = ((i · (√‘-𝐴))↑2))
3029eqeq1d 2739 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((𝑥↑2) = 𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
31 fveq2 6906 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (ℜ‘𝑥) = (ℜ‘(i · (√‘-𝐴))))
3231breq2d 5155 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(i · (√‘-𝐴)))))
33 oveq2 7439 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (i · 𝑥) = (i · (i · (√‘-𝐴))))
34 neleq1 3052 . . . . . . . . 9 ((i · 𝑥) = (i · (i · (√‘-𝐴))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3533, 34syl 17 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3630, 32, 353anbi123d 1438 . . . . . . 7 (𝑥 = (i · (√‘-𝐴)) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
3736rspcev 3622 . . . . . 6 (((i · (√‘-𝐴)) ∈ ℂ ∧ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3821, 28, 37syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3938ex 412 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) = -𝐴 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
408, 39sylbid 240 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
41 resqrtcl 15292 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (√‘(abs‘𝐴)) ∈ ℝ)
421, 10, 41syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
4342recnd 11289 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
4443adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℂ)
45 addcl 11237 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
462, 45mpancom 688 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) + 𝐴) ∈ ℂ)
4746adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
48 abscl 15317 . . . . . . . . . 10 (((abs‘𝐴) + 𝐴) ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
4946, 48syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
5049recnd 11289 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5150adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5246abs00ad 15329 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
5352necon3bid 2985 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) ≠ 0 ↔ ((abs‘𝐴) + 𝐴) ≠ 0))
5453biimpar 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
5547, 51, 54divcld 12043 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
5644, 55mulcld 11281 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
57 eqid 2737 . . . . . 6 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5857sqreulem 15398 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
59 oveq1 7438 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (𝑥↑2) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2))
6059eqeq1d 2739 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((𝑥↑2) = 𝐴 ↔ (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴))
61 fveq2 6906 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (ℜ‘𝑥) = (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
6261breq2d 5155 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))))))
63 oveq2 7439 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
64 neleq1 3052 . . . . . . . 8 ((i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6563, 64syl 17 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6660, 62, 653anbi123d 1438 . . . . . 6 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)))
6766rspcev 3622 . . . . 5 ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ ∧ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6856, 58, 67syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6968ex 412 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7040, 69pm2.61dne 3028 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
71 sqrmo 15290 . 2 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
72 reu5 3382 . 2 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7370, 71, 72sylanbrc 583 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wnel 3046  wrex 3070  ∃!wreu 3378  ∃*wrmo 3379   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  ici 11157   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  +crp 13034  cexp 14102  cre 15136  csqrt 15272  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  sqrtcl  15400  sqrtthlem  15401  eqsqrtd  15406
  Copyright terms: Public domain W3C validator