MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreu Structured version   Visualization version   GIF version

Theorem sqreu 14388
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqreu (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqreu
StepHypRef Expression
1 abscl 14306 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
21recnd 10324 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
3 subneg 10586 . . . . . . 7 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
42, 3mpancom 679 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
54eqeq1d 2767 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
6 negcl 10537 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
72, 6subeq0ad 10658 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
85, 7bitr3d 272 . . . 4 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
9 ax-icn 10250 . . . . . . 7 i ∈ ℂ
10 absge0 14315 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
111, 10jca 507 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
12 eleq1 2832 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ ↔ -𝐴 ∈ ℝ))
13 breq2 4815 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → (0 ≤ (abs‘𝐴) ↔ 0 ≤ -𝐴))
1412, 13anbi12d 624 . . . . . . . . . . 11 ((abs‘𝐴) = -𝐴 → (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1511, 14syl5ib 235 . . . . . . . . . 10 ((abs‘𝐴) = -𝐴 → (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1615impcom 396 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴))
17 resqrtcl 14282 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (√‘-𝐴) ∈ ℝ)
1816, 17syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℝ)
1918recnd 10324 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℂ)
20 mulcl 10275 . . . . . . 7 ((i ∈ ℂ ∧ (√‘-𝐴) ∈ ℂ) → (i · (√‘-𝐴)) ∈ ℂ)
219, 19, 20sylancr 581 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (i · (√‘-𝐴)) ∈ ℂ)
22 sqrtneglem 14295 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
2316, 22syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
24 negneg 10587 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
2524adantr 472 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → --𝐴 = 𝐴)
2625eqeq2d 2775 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
27263anbi1d 1564 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ((((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
2823, 27mpbid 223 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
29 oveq1 6851 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (𝑥↑2) = ((i · (√‘-𝐴))↑2))
3029eqeq1d 2767 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((𝑥↑2) = 𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
31 fveq2 6377 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (ℜ‘𝑥) = (ℜ‘(i · (√‘-𝐴))))
3231breq2d 4823 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(i · (√‘-𝐴)))))
33 oveq2 6852 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (i · 𝑥) = (i · (i · (√‘-𝐴))))
34 neleq1 3045 . . . . . . . . 9 ((i · 𝑥) = (i · (i · (√‘-𝐴))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3533, 34syl 17 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3630, 32, 353anbi123d 1560 . . . . . . 7 (𝑥 = (i · (√‘-𝐴)) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
3736rspcev 3462 . . . . . 6 (((i · (√‘-𝐴)) ∈ ℂ ∧ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3821, 28, 37syl2anc 579 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3938ex 401 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) = -𝐴 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
408, 39sylbid 231 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
41 resqrtcl 14282 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (√‘(abs‘𝐴)) ∈ ℝ)
421, 10, 41syl2anc 579 . . . . . . . 8 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
4342recnd 10324 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
4443adantr 472 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℂ)
45 addcl 10273 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
462, 45mpancom 679 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) + 𝐴) ∈ ℂ)
4746adantr 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
48 abscl 14306 . . . . . . . . . 10 (((abs‘𝐴) + 𝐴) ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
4946, 48syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
5049recnd 10324 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5150adantr 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5246abs00ad 14318 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
5352necon3bid 2981 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) ≠ 0 ↔ ((abs‘𝐴) + 𝐴) ≠ 0))
5453biimpar 469 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
5547, 51, 54divcld 11057 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
5644, 55mulcld 10316 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
57 eqid 2765 . . . . . 6 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5857sqreulem 14387 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
59 oveq1 6851 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (𝑥↑2) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2))
6059eqeq1d 2767 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((𝑥↑2) = 𝐴 ↔ (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴))
61 fveq2 6377 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (ℜ‘𝑥) = (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
6261breq2d 4823 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))))))
63 oveq2 6852 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
64 neleq1 3045 . . . . . . . 8 ((i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6563, 64syl 17 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6660, 62, 653anbi123d 1560 . . . . . 6 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)))
6766rspcev 3462 . . . . 5 ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ ∧ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6856, 58, 67syl2anc 579 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6968ex 401 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7040, 69pm2.61dne 3023 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
71 sqrmo 14280 . 2 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
72 reu5 3307 . 2 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7370, 71, 72sylanbrc 578 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wnel 3040  wrex 3056  ∃!wreu 3057  ∃*wrmo 3058   class class class wbr 4811  cfv 6070  (class class class)co 6844  cc 10189  cr 10190  0cc0 10191  ici 10193   + caddc 10194   · cmul 10196  cle 10331  cmin 10522  -cneg 10523   / cdiv 10940  2c2 11329  +crp 12031  cexp 13070  cre 14125  csqrt 14261  abscabs 14262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-seq 13012  df-exp 13071  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264
This theorem is referenced by:  sqrtcl  14389  sqrtthlem  14390  eqsqrtd  14395
  Copyright terms: Public domain W3C validator