MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreu Structured version   Visualization version   GIF version

Theorem sqreu 15245
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqreu (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqreu
StepHypRef Expression
1 abscl 15163 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
21recnd 11183 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
3 subneg 11450 . . . . . . 7 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
42, 3mpancom 686 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
54eqeq1d 2738 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
6 negcl 11401 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
72, 6subeq0ad 11522 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
85, 7bitr3d 280 . . . 4 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
9 ax-icn 11110 . . . . . . 7 i ∈ ℂ
10 absge0 15172 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
111, 10jca 512 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
12 eleq1 2825 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ ↔ -𝐴 ∈ ℝ))
13 breq2 5109 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → (0 ≤ (abs‘𝐴) ↔ 0 ≤ -𝐴))
1412, 13anbi12d 631 . . . . . . . . . . 11 ((abs‘𝐴) = -𝐴 → (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1511, 14imbitrid 243 . . . . . . . . . 10 ((abs‘𝐴) = -𝐴 → (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1615impcom 408 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴))
17 resqrtcl 15138 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (√‘-𝐴) ∈ ℝ)
1816, 17syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℝ)
1918recnd 11183 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℂ)
20 mulcl 11135 . . . . . . 7 ((i ∈ ℂ ∧ (√‘-𝐴) ∈ ℂ) → (i · (√‘-𝐴)) ∈ ℂ)
219, 19, 20sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (i · (√‘-𝐴)) ∈ ℂ)
22 sqrtneglem 15151 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
2316, 22syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
24 negneg 11451 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
2524adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → --𝐴 = 𝐴)
2625eqeq2d 2747 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
27263anbi1d 1440 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ((((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
2823, 27mpbid 231 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
29 oveq1 7364 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (𝑥↑2) = ((i · (√‘-𝐴))↑2))
3029eqeq1d 2738 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((𝑥↑2) = 𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
31 fveq2 6842 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (ℜ‘𝑥) = (ℜ‘(i · (√‘-𝐴))))
3231breq2d 5117 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(i · (√‘-𝐴)))))
33 oveq2 7365 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (i · 𝑥) = (i · (i · (√‘-𝐴))))
34 neleq1 3054 . . . . . . . . 9 ((i · 𝑥) = (i · (i · (√‘-𝐴))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3533, 34syl 17 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3630, 32, 353anbi123d 1436 . . . . . . 7 (𝑥 = (i · (√‘-𝐴)) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
3736rspcev 3581 . . . . . 6 (((i · (√‘-𝐴)) ∈ ℂ ∧ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3821, 28, 37syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3938ex 413 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) = -𝐴 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
408, 39sylbid 239 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
41 resqrtcl 15138 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (√‘(abs‘𝐴)) ∈ ℝ)
421, 10, 41syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
4342recnd 11183 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
4443adantr 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℂ)
45 addcl 11133 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
462, 45mpancom 686 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) + 𝐴) ∈ ℂ)
4746adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
48 abscl 15163 . . . . . . . . . 10 (((abs‘𝐴) + 𝐴) ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
4946, 48syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
5049recnd 11183 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5150adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5246abs00ad 15175 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
5352necon3bid 2988 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) ≠ 0 ↔ ((abs‘𝐴) + 𝐴) ≠ 0))
5453biimpar 478 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
5547, 51, 54divcld 11931 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
5644, 55mulcld 11175 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
57 eqid 2736 . . . . . 6 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5857sqreulem 15244 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
59 oveq1 7364 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (𝑥↑2) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2))
6059eqeq1d 2738 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((𝑥↑2) = 𝐴 ↔ (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴))
61 fveq2 6842 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (ℜ‘𝑥) = (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
6261breq2d 5117 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))))))
63 oveq2 7365 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
64 neleq1 3054 . . . . . . . 8 ((i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6563, 64syl 17 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6660, 62, 653anbi123d 1436 . . . . . 6 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)))
6766rspcev 3581 . . . . 5 ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ ∧ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6856, 58, 67syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6968ex 413 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7040, 69pm2.61dne 3031 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
71 sqrmo 15136 . 2 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
72 reu5 3355 . 2 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7370, 71, 72sylanbrc 583 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wnel 3049  wrex 3073  ∃!wreu 3351  ∃*wrmo 3352   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  ici 11053   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  +crp 12915  cexp 13967  cre 14982  csqrt 15118  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  sqrtcl  15246  sqrtthlem  15247  eqsqrtd  15252
  Copyright terms: Public domain W3C validator