Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcnv Structured version   Visualization version   GIF version

Theorem xrge0iifcnv 33916
Description: Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcnv (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xrge0iifcnv
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 0xr 11162 . . . . . . 7 0 ∈ ℝ*
3 pnfxr 11169 . . . . . . 7 +∞ ∈ ℝ*
4 0lepnf 13035 . . . . . . 7 0 ≤ +∞
5 ubicc2 13368 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
62, 3, 4, 5mp3an 1463 . . . . . 6 +∞ ∈ (0[,]+∞)
76a1i 11 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 0) → +∞ ∈ (0[,]+∞))
8 icossicc 13339 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
9 uncom 4109 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = ((0(,]1) ∪ {0})
10 1xr 11174 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
11 0le1 11643 . . . . . . . . . . . . . . 15 0 ≤ 1
12 snunioc 13383 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
132, 10, 11, 12mp3an 1463 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = (0[,]1)
149, 13eqtr3i 2754 . . . . . . . . . . . . 13 ((0(,]1) ∪ {0}) = (0[,]1)
1514eleq2i 2820 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ 𝑥 ∈ (0[,]1))
16 elun 4104 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
1715, 16bitr3i 277 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
18 pm2.53 851 . . . . . . . . . . 11 ((𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
1917, 18sylbi 217 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
20 elsni 4594 . . . . . . . . . 10 (𝑥 ∈ {0} → 𝑥 = 0)
2119, 20syl6 35 . . . . . . . . 9 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 = 0))
2221con1d 145 . . . . . . . 8 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → 𝑥 ∈ (0(,]1)))
2322imp 406 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ (0(,]1))
24 0le0 12229 . . . . . . . . . . . . . 14 0 ≤ 0
25 1re 11115 . . . . . . . . . . . . . . 15 1 ∈ ℝ
26 ltpnf 13022 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → 1 < +∞)
2725, 26ax-mp 5 . . . . . . . . . . . . . 14 1 < +∞
28 iocssioo 13342 . . . . . . . . . . . . . 14 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
292, 3, 24, 27, 28mp4an 693 . . . . . . . . . . . . 13 (0(,]1) ⊆ (0(,)+∞)
30 ioorp 13328 . . . . . . . . . . . . 13 (0(,)+∞) = ℝ+
3129, 30sseqtri 3984 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ+
3231sseli 3931 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ∈ ℝ+)
3332relogcld 26530 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℝ)
3433renegcld 11547 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ)
3534rexrd 11165 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ*)
36 elioc1 13290 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1)))
372, 10, 36mp2an 692 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1))
3837simp3bi 1147 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ≤ 1)
39 1rp 12897 . . . . . . . . . . . . 13 1 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) → 1 ∈ ℝ+)
4132, 40logled 26534 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (𝑥 ≤ 1 ↔ (log‘𝑥) ≤ (log‘1)))
4238, 41mpbid 232 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ (log‘1))
43 log1 26492 . . . . . . . . . 10 (log‘1) = 0
4442, 43breqtrdi 5133 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ 0)
4533le0neg1d 11691 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → ((log‘𝑥) ≤ 0 ↔ 0 ≤ -(log‘𝑥)))
4644, 45mpbid 232 . . . . . . . 8 (𝑥 ∈ (0(,]1) → 0 ≤ -(log‘𝑥))
47 ltpnf 13022 . . . . . . . . 9 (-(log‘𝑥) ∈ ℝ → -(log‘𝑥) < +∞)
4834, 47syl 17 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) < +∞)
49 elico1 13291 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞)))
502, 3, 49mp2an 692 . . . . . . . 8 (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞))
5135, 46, 48, 50syl3anbrc 1344 . . . . . . 7 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ (0[,)+∞))
5223, 51syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,)+∞))
538, 52sselid 3933 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,]+∞))
547, 53ifclda 4512 . . . 4 (𝑥 ∈ (0[,]1) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
5554adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
56 0elunit 13372 . . . . . 6 0 ∈ (0[,]1)
5756a1i 11 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ 𝑦 = +∞) → 0 ∈ (0[,]1))
58 iocssicc 13340 . . . . . 6 (0(,]1) ⊆ (0[,]1)
59 snunico 13382 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → ((0[,)+∞) ∪ {+∞}) = (0[,]+∞))
602, 3, 4, 59mp3an 1463 . . . . . . . . . . . . 13 ((0[,)+∞) ∪ {+∞}) = (0[,]+∞)
6160eleq2i 2820 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ 𝑦 ∈ (0[,]+∞))
62 elun 4104 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
6361, 62bitr3i 277 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
64 pm2.53 851 . . . . . . . . . . 11 ((𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
6563, 64sylbi 217 . . . . . . . . . 10 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
66 elsni 4594 . . . . . . . . . 10 (𝑦 ∈ {+∞} → 𝑦 = +∞)
6765, 66syl6 35 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 = +∞))
6867con1d 145 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 = +∞ → 𝑦 ∈ (0[,)+∞)))
6968imp 406 . . . . . . 7 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ (0[,)+∞))
70 rge0ssre 13359 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
7170sseli 3931 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
7271renegcld 11547 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ∈ ℝ)
7372reefcld 15995 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ)
7473rexrd 11165 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ*)
75 efgt0 16012 . . . . . . . . 9 (-𝑦 ∈ ℝ → 0 < (exp‘-𝑦))
7672, 75syl 17 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 < (exp‘-𝑦))
77 elico1 13291 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
782, 3, 77mp2an 692 . . . . . . . . . . . 12 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
7978simp2bi 1146 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
8071le0neg2d 11692 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → (0 ≤ 𝑦 ↔ -𝑦 ≤ 0))
8179, 80mpbid 232 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ≤ 0)
82 0re 11117 . . . . . . . . . . 11 0 ∈ ℝ
83 efle 16027 . . . . . . . . . . 11 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8472, 82, 83sylancl 586 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8581, 84mpbid 232 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ (exp‘0))
86 ef0 15998 . . . . . . . . 9 (exp‘0) = 1
8785, 86breqtrdi 5133 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ 1)
88 elioc1 13290 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1)))
892, 10, 88mp2an 692 . . . . . . . 8 ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1))
9074, 76, 87, 89syl3anbrc 1344 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ (0(,]1))
9169, 90syl 17 . . . . . 6 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0(,]1))
9258, 91sselid 3933 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0[,]1))
9357, 92ifclda 4512 . . . 4 (𝑦 ∈ (0[,]+∞) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
9493adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,]+∞)) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
95 eqeq2 2741 . . . . . 6 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = 0 ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9695bibi1d 343 . . . . 5 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
97 eqeq2 2741 . . . . . 6 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = (exp‘-𝑦) ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9897bibi1d 343 . . . . 5 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
99 simpr 484 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 = +∞)
100 iftrue 4482 . . . . . . . 8 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
101100eqeq2d 2740 . . . . . . 7 (𝑥 = 0 → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) ↔ 𝑦 = +∞))
10299, 101syl5ibrcom 247 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 → 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
103 ubico 32727 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ¬ +∞ ∈ (0[,)+∞))
10482, 3, 103mp2an 692 . . . . . . . . . 10 ¬ +∞ ∈ (0[,)+∞)
105104nelir 3032 . . . . . . . . 9 +∞ ∉ (0[,)+∞)
106 neleq1 3035 . . . . . . . . . 10 (𝑦 = +∞ → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
107106adantl 481 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
108105, 107mpbiri 258 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 ∉ (0[,)+∞))
109 neleq1 3035 . . . . . . . 8 (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 ∉ (0[,)+∞) ↔ if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
110108, 109syl5ibcom 245 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
111 df-nel 3030 . . . . . . . 8 (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) ↔ ¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
112 iffalse 4485 . . . . . . . . . . . . 13 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
113112adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
114113, 52eqeltrd 2828 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
115114ex 412 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
116115ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
117116con1d 145 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞) → 𝑥 = 0))
118111, 117biimtrid 242 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) → 𝑥 = 0))
119110, 118syld 47 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → 𝑥 = 0))
120102, 119impbid 212 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
121 eqeq2 2741 . . . . . . 7 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
122121bibi2d 342 . . . . . 6 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
123 eqeq2 2741 . . . . . . 7 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = -(log‘𝑥) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
124123bibi2d 342 . . . . . 6 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
12582a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ∈ ℝ)
12669, 76syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 < (exp‘-𝑦))
127125, 126ltned 11252 . . . . . . . . . . 11 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
128127adantll 714 . . . . . . . . . 10 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
129128neneqd 2930 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → ¬ 0 = (exp‘-𝑦))
130 eqeq1 2733 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 = (exp‘-𝑦) ↔ 0 = (exp‘-𝑦)))
131130notbid 318 . . . . . . . . 9 (𝑥 = 0 → (¬ 𝑥 = (exp‘-𝑦) ↔ ¬ 0 = (exp‘-𝑦)))
132129, 131syl5ibrcom 247 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = 0 → ¬ 𝑥 = (exp‘-𝑦)))
133132imp 406 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑥 = (exp‘-𝑦))
134 simplr 768 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑦 = +∞)
135133, 1342falsed 376 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞))
136 eqcom 2736 . . . . . . . . . . 11 (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥)
137136a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥))
138 relogeftb 26491 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ -𝑦 ∈ ℝ) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
13932, 72, 138syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
14033recnd 11143 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℂ)
14171recnd 11143 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
142 negcon2 11417 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
143140, 141, 142syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
144137, 139, 1433bitr2d 307 . . . . . . . . 9 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
14523, 69, 144syl2an 596 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) ∧ (𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
146145an4s 660 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
147146anass1rs 655 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
148122, 124, 135, 147ifbothda 4515 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
14996, 98, 120, 148ifbothda 4515 . . . 4 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
150149adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
1511, 55, 94, 150f1ocnv2d 7602 . 2 (⊤ → (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))))
152151mptru 1547 1 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wnel 3029  cun 3901  wss 3903  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  -cneg 11348  +crp 12893  (,)cioo 13248  (,]cioc 13249  [,)cico 13250  [,]cicc 13251  expce 15968  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463
This theorem is referenced by:  xrge0iifiso  33918  xrge0iifmhm  33922  xrge0pluscn  33923
  Copyright terms: Public domain W3C validator