Proof of Theorem xrge0iifcnv
Step | Hyp | Ref
| Expression |
1 | | xrge0iifhmeo.1 |
. . 3
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
2 | | 0xr 11022 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
3 | | pnfxr 11029 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
4 | | 0lepnf 12868 |
. . . . . . 7
⊢ 0 ≤
+∞ |
5 | | ubicc2 13197 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0
≤ +∞) → +∞ ∈ (0[,]+∞)) |
6 | 2, 3, 4, 5 | mp3an 1460 |
. . . . . 6
⊢ +∞
∈ (0[,]+∞) |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 0) → +∞ ∈
(0[,]+∞)) |
8 | | icossicc 13168 |
. . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
9 | | uncom 4087 |
. . . . . . . . . . . . . 14
⊢ ({0}
∪ (0(,]1)) = ((0(,]1) ∪ {0}) |
10 | | 1xr 11034 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ* |
11 | | 0le1 11498 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
1 |
12 | | snunioc 13212 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1)
→ ({0} ∪ (0(,]1)) = (0[,]1)) |
13 | 2, 10, 11, 12 | mp3an 1460 |
. . . . . . . . . . . . . 14
⊢ ({0}
∪ (0(,]1)) = (0[,]1) |
14 | 9, 13 | eqtr3i 2768 |
. . . . . . . . . . . . 13
⊢ ((0(,]1)
∪ {0}) = (0[,]1) |
15 | 14 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((0(,]1) ∪ {0})
↔ 𝑥 ∈
(0[,]1)) |
16 | | elun 4083 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((0(,]1) ∪ {0})
↔ (𝑥 ∈ (0(,]1)
∨ 𝑥 ∈
{0})) |
17 | 15, 16 | bitr3i 276 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0})) |
18 | | pm2.53 848 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0})) |
19 | 17, 18 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 ∈ (0(,]1) →
𝑥 ∈
{0})) |
20 | | elsni 4578 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {0} → 𝑥 = 0) |
21 | 19, 20 | syl6 35 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 ∈ (0(,]1) →
𝑥 = 0)) |
22 | 21 | con1d 145 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 = 0 → 𝑥 ∈
(0(,]1))) |
23 | 22 | imp 407 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 0) → 𝑥 ∈
(0(,]1)) |
24 | | 0le0 12074 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
0 |
25 | | 1re 10975 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
26 | | ltpnf 12856 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℝ → 1 < +∞) |
27 | 25, 26 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 1 <
+∞ |
28 | | iocssioo 13171 |
. . . . . . . . . . . . . 14
⊢ (((0
∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0
≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆
(0(,)+∞)) |
29 | 2, 3, 24, 27, 28 | mp4an 690 |
. . . . . . . . . . . . 13
⊢ (0(,]1)
⊆ (0(,)+∞) |
30 | | ioorp 13157 |
. . . . . . . . . . . . 13
⊢
(0(,)+∞) = ℝ+ |
31 | 29, 30 | sseqtri 3957 |
. . . . . . . . . . . 12
⊢ (0(,]1)
⊆ ℝ+ |
32 | 31 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,]1) → 𝑥 ∈
ℝ+) |
33 | 32 | relogcld 25778 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0(,]1) →
(log‘𝑥) ∈
ℝ) |
34 | 33 | renegcld 11402 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0(,]1) →
-(log‘𝑥) ∈
ℝ) |
35 | 34 | rexrd 11025 |
. . . . . . . 8
⊢ (𝑥 ∈ (0(,]1) →
-(log‘𝑥) ∈
ℝ*) |
36 | | elioc1 13121 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ*
∧ 0 < 𝑥 ∧ 𝑥 ≤ 1))) |
37 | 2, 10, 36 | mp2an 689 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ*
∧ 0 < 𝑥 ∧ 𝑥 ≤ 1)) |
38 | 37 | simp3bi 1146 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,]1) → 𝑥 ≤ 1) |
39 | | 1rp 12734 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
40 | 39 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,]1) → 1 ∈
ℝ+) |
41 | 32, 40 | logled 25782 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,]1) → (𝑥 ≤ 1 ↔ (log‘𝑥) ≤
(log‘1))) |
42 | 38, 41 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0(,]1) →
(log‘𝑥) ≤
(log‘1)) |
43 | | log1 25741 |
. . . . . . . . . 10
⊢
(log‘1) = 0 |
44 | 42, 43 | breqtrdi 5115 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0(,]1) →
(log‘𝑥) ≤
0) |
45 | 33 | le0neg1d 11546 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0(,]1) →
((log‘𝑥) ≤ 0
↔ 0 ≤ -(log‘𝑥))) |
46 | 44, 45 | mpbid 231 |
. . . . . . . 8
⊢ (𝑥 ∈ (0(,]1) → 0 ≤
-(log‘𝑥)) |
47 | | ltpnf 12856 |
. . . . . . . . 9
⊢
(-(log‘𝑥)
∈ ℝ → -(log‘𝑥) < +∞) |
48 | 34, 47 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ (0(,]1) →
-(log‘𝑥) <
+∞) |
49 | | elico1 13122 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) →
(-(log‘𝑥) ∈
(0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤
-(log‘𝑥) ∧
-(log‘𝑥) <
+∞))) |
50 | 2, 3, 49 | mp2an 689 |
. . . . . . . 8
⊢
(-(log‘𝑥)
∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤
-(log‘𝑥) ∧
-(log‘𝑥) <
+∞)) |
51 | 35, 46, 48, 50 | syl3anbrc 1342 |
. . . . . . 7
⊢ (𝑥 ∈ (0(,]1) →
-(log‘𝑥) ∈
(0[,)+∞)) |
52 | 23, 51 | syl 17 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 0) →
-(log‘𝑥) ∈
(0[,)+∞)) |
53 | 8, 52 | sselid 3919 |
. . . . 5
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 0) →
-(log‘𝑥) ∈
(0[,]+∞)) |
54 | 7, 53 | ifclda 4494 |
. . . 4
⊢ (𝑥 ∈ (0[,]1) → if(𝑥 = 0, +∞,
-(log‘𝑥)) ∈
(0[,]+∞)) |
55 | 54 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ (0[,]1)) → if(𝑥
= 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞)) |
56 | | 0elunit 13201 |
. . . . . 6
⊢ 0 ∈
(0[,]1) |
57 | 56 | a1i 11 |
. . . . 5
⊢ ((𝑦 ∈ (0[,]+∞) ∧
𝑦 = +∞) → 0
∈ (0[,]1)) |
58 | | iocssicc 13169 |
. . . . . 6
⊢ (0(,]1)
⊆ (0[,]1) |
59 | | snunico 13211 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0
≤ +∞) → ((0[,)+∞) ∪ {+∞}) =
(0[,]+∞)) |
60 | 2, 3, 4, 59 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢
((0[,)+∞) ∪ {+∞}) = (0[,]+∞) |
61 | 60 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ((0[,)+∞) ∪
{+∞}) ↔ 𝑦 ∈
(0[,]+∞)) |
62 | | elun 4083 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ((0[,)+∞) ∪
{+∞}) ↔ (𝑦
∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞})) |
63 | 61, 62 | bitr3i 276 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0[,]+∞) ↔
(𝑦 ∈ (0[,)+∞)
∨ 𝑦 ∈
{+∞})) |
64 | | pm2.53 848 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (0[,)+∞) ∨
𝑦 ∈ {+∞}) →
(¬ 𝑦 ∈
(0[,)+∞) → 𝑦
∈ {+∞})) |
65 | 63, 64 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,]+∞) →
(¬ 𝑦 ∈
(0[,)+∞) → 𝑦
∈ {+∞})) |
66 | | elsni 4578 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {+∞} → 𝑦 = +∞) |
67 | 65, 66 | syl6 35 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,]+∞) →
(¬ 𝑦 ∈
(0[,)+∞) → 𝑦 =
+∞)) |
68 | 67 | con1d 145 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,]+∞) →
(¬ 𝑦 = +∞ →
𝑦 ∈
(0[,)+∞))) |
69 | 68 | imp 407 |
. . . . . . 7
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
𝑦 ∈
(0[,)+∞)) |
70 | | rge0ssre 13188 |
. . . . . . . . . . . 12
⊢
(0[,)+∞) ⊆ ℝ |
71 | 70 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0[,)+∞) →
𝑦 ∈
ℝ) |
72 | 71 | renegcld 11402 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)+∞) →
-𝑦 ∈
ℝ) |
73 | 72 | reefcld 15797 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,)+∞) →
(exp‘-𝑦) ∈
ℝ) |
74 | 73 | rexrd 11025 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)+∞) →
(exp‘-𝑦) ∈
ℝ*) |
75 | | efgt0 15812 |
. . . . . . . . 9
⊢ (-𝑦 ∈ ℝ → 0 <
(exp‘-𝑦)) |
76 | 72, 75 | syl 17 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)+∞) → 0
< (exp‘-𝑦)) |
77 | | elico1 13122 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) →
(𝑦 ∈ (0[,)+∞)
↔ (𝑦 ∈
ℝ* ∧ 0 ≤ 𝑦 ∧ 𝑦 < +∞))) |
78 | 2, 3, 77 | mp2an 689 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0[,)+∞) ↔
(𝑦 ∈
ℝ* ∧ 0 ≤ 𝑦 ∧ 𝑦 < +∞)) |
79 | 78 | simp2bi 1145 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0[,)+∞) → 0
≤ 𝑦) |
80 | 71 | le0neg2d 11547 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0[,)+∞) → (0
≤ 𝑦 ↔ -𝑦 ≤ 0)) |
81 | 79, 80 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)+∞) →
-𝑦 ≤ 0) |
82 | | 0re 10977 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
83 | | efle 15827 |
. . . . . . . . . . 11
⊢ ((-𝑦 ∈ ℝ ∧ 0 ∈
ℝ) → (-𝑦 ≤ 0
↔ (exp‘-𝑦) ≤
(exp‘0))) |
84 | 72, 82, 83 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)+∞) →
(-𝑦 ≤ 0 ↔
(exp‘-𝑦) ≤
(exp‘0))) |
85 | 81, 84 | mpbid 231 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,)+∞) →
(exp‘-𝑦) ≤
(exp‘0)) |
86 | | ef0 15800 |
. . . . . . . . 9
⊢
(exp‘0) = 1 |
87 | 85, 86 | breqtrdi 5115 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)+∞) →
(exp‘-𝑦) ≤
1) |
88 | | elioc1 13121 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) →
((exp‘-𝑦) ∈
(0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 <
(exp‘-𝑦) ∧
(exp‘-𝑦) ≤
1))) |
89 | 2, 10, 88 | mp2an 689 |
. . . . . . . 8
⊢
((exp‘-𝑦)
∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 <
(exp‘-𝑦) ∧
(exp‘-𝑦) ≤
1)) |
90 | 74, 76, 87, 89 | syl3anbrc 1342 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,)+∞) →
(exp‘-𝑦) ∈
(0(,]1)) |
91 | 69, 90 | syl 17 |
. . . . . 6
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
(exp‘-𝑦) ∈
(0(,]1)) |
92 | 58, 91 | sselid 3919 |
. . . . 5
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
(exp‘-𝑦) ∈
(0[,]1)) |
93 | 57, 92 | ifclda 4494 |
. . . 4
⊢ (𝑦 ∈ (0[,]+∞) →
if(𝑦 = +∞, 0,
(exp‘-𝑦)) ∈
(0[,]1)) |
94 | 93 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ (0[,]+∞)) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈
(0[,]1)) |
95 | | eqeq2 2750 |
. . . . . 6
⊢ (0 =
if(𝑦 = +∞, 0,
(exp‘-𝑦)) →
(𝑥 = 0 ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)))) |
96 | 95 | bibi1d 344 |
. . . . 5
⊢ (0 =
if(𝑦 = +∞, 0,
(exp‘-𝑦)) →
((𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))) |
97 | | eqeq2 2750 |
. . . . . 6
⊢
((exp‘-𝑦) =
if(𝑦 = +∞, 0,
(exp‘-𝑦)) →
(𝑥 = (exp‘-𝑦) ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)))) |
98 | 97 | bibi1d 344 |
. . . . 5
⊢
((exp‘-𝑦) =
if(𝑦 = +∞, 0,
(exp‘-𝑦)) →
((𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))) |
99 | | simpr 485 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → 𝑦 = +∞) |
100 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑥 = 0 → if(𝑥 = 0, +∞,
-(log‘𝑥)) =
+∞) |
101 | 100 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) ↔ 𝑦 = +∞)) |
102 | 99, 101 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑥 = 0 → 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))) |
103 | | ubico 31096 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → ¬ +∞
∈ (0[,)+∞)) |
104 | 82, 3, 103 | mp2an 689 |
. . . . . . . . . 10
⊢ ¬
+∞ ∈ (0[,)+∞) |
105 | 104 | nelir 3052 |
. . . . . . . . 9
⊢ +∞
∉ (0[,)+∞) |
106 | | neleq1 3054 |
. . . . . . . . . 10
⊢ (𝑦 = +∞ → (𝑦 ∉ (0[,)+∞) ↔
+∞ ∉ (0[,)+∞))) |
107 | 106 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑦 ∉ (0[,)+∞) ↔
+∞ ∉ (0[,)+∞))) |
108 | 105, 107 | mpbiri 257 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → 𝑦 ∉
(0[,)+∞)) |
109 | | neleq1 3054 |
. . . . . . . 8
⊢ (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 ∉ (0[,)+∞) ↔ if(𝑥 = 0, +∞,
-(log‘𝑥)) ∉
(0[,)+∞))) |
110 | 108, 109 | syl5ibcom 244 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∉
(0[,)+∞))) |
111 | | df-nel 3050 |
. . . . . . . 8
⊢ (if(𝑥 = 0, +∞,
-(log‘𝑥)) ∉
(0[,)+∞) ↔ ¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈
(0[,)+∞)) |
112 | | iffalse 4468 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 = 0 → if(𝑥 = 0, +∞,
-(log‘𝑥)) =
-(log‘𝑥)) |
113 | 112 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 0) → if(𝑥 = 0, +∞,
-(log‘𝑥)) =
-(log‘𝑥)) |
114 | 113, 52 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 0) → if(𝑥 = 0, +∞,
-(log‘𝑥)) ∈
(0[,)+∞)) |
115 | 114 | ex 413 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 = 0 → if(𝑥 = 0, +∞,
-(log‘𝑥)) ∈
(0[,)+∞))) |
116 | 115 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (¬
𝑥 = 0 → if(𝑥 = 0, +∞,
-(log‘𝑥)) ∈
(0[,)+∞))) |
117 | 116 | con1d 145 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (¬
if(𝑥 = 0, +∞,
-(log‘𝑥)) ∈
(0[,)+∞) → 𝑥 =
0)) |
118 | 111, 117 | syl5bi 241 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) →
(if(𝑥 = 0, +∞,
-(log‘𝑥)) ∉
(0[,)+∞) → 𝑥 =
0)) |
119 | 110, 118 | syld 47 |
. . . . . 6
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → 𝑥 = 0)) |
120 | 102, 119 | impbid 211 |
. . . . 5
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))) |
121 | | eqeq2 2750 |
. . . . . . 7
⊢ (+∞
= if(𝑥 = 0, +∞,
-(log‘𝑥)) →
(𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))) |
122 | 121 | bibi2d 343 |
. . . . . 6
⊢ (+∞
= if(𝑥 = 0, +∞,
-(log‘𝑥)) →
((𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))) |
123 | | eqeq2 2750 |
. . . . . . 7
⊢
(-(log‘𝑥) =
if(𝑥 = 0, +∞,
-(log‘𝑥)) →
(𝑦 = -(log‘𝑥) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))) |
124 | 123 | bibi2d 343 |
. . . . . 6
⊢
(-(log‘𝑥) =
if(𝑥 = 0, +∞,
-(log‘𝑥)) →
((𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))) |
125 | 82 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
0 ∈ ℝ) |
126 | 69, 76 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
0 < (exp‘-𝑦)) |
127 | 125, 126 | ltned 11111 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
0 ≠ (exp‘-𝑦)) |
128 | 127 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
0 ≠ (exp‘-𝑦)) |
129 | 128 | neneqd 2948 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
¬ 0 = (exp‘-𝑦)) |
130 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝑥 = (exp‘-𝑦) ↔ 0 = (exp‘-𝑦))) |
131 | 130 | notbid 318 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (¬ 𝑥 = (exp‘-𝑦) ↔ ¬ 0 =
(exp‘-𝑦))) |
132 | 129, 131 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
(𝑥 = 0 → ¬ 𝑥 = (exp‘-𝑦))) |
133 | 132 | imp 407 |
. . . . . . 7
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
𝑥 = 0) → ¬ 𝑥 = (exp‘-𝑦)) |
134 | | simplr 766 |
. . . . . . 7
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
𝑥 = 0) → ¬ 𝑦 = +∞) |
135 | 133, 134 | 2falsed 377 |
. . . . . 6
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞)) |
136 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥) |
137 | 136 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥)) |
138 | | relogeftb 25740 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ -𝑦 ∈ ℝ)
→ ((log‘𝑥) =
-𝑦 ↔ (exp‘-𝑦) = 𝑥)) |
139 | 32, 72, 138 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) →
((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥)) |
140 | 33 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,]1) →
(log‘𝑥) ∈
ℂ) |
141 | 71 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0[,)+∞) →
𝑦 ∈
ℂ) |
142 | | negcon2 11274 |
. . . . . . . . . . 11
⊢
(((log‘𝑥)
∈ ℂ ∧ 𝑦
∈ ℂ) → ((log‘𝑥) = -𝑦 ↔ 𝑦 = -(log‘𝑥))) |
143 | 140, 141,
142 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) →
((log‘𝑥) = -𝑦 ↔ 𝑦 = -(log‘𝑥))) |
144 | 137, 139,
143 | 3bitr2d 307 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥))) |
145 | 23, 69, 144 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 0) ∧ (𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞)) →
(𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥))) |
146 | 145 | an4s 657 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
(¬ 𝑥 = 0 ∧ ¬
𝑦 = +∞)) →
(𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥))) |
147 | 146 | anass1rs 652 |
. . . . . 6
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
¬ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥))) |
148 | 122, 124,
135, 147 | ifbothda 4497 |
. . . . 5
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
(𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))) |
149 | 96, 98, 120, 148 | ifbothda 4497 |
. . . 4
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) →
(𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))) |
150 | 149 | adantl 482 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ (0[,]1) ∧ 𝑦
∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))) |
151 | 1, 55, 94, 150 | f1ocnv2d 7522 |
. 2
⊢ (⊤
→ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0,
(exp‘-𝑦))))) |
152 | 151 | mptru 1546 |
1
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0,
(exp‘-𝑦)))) |