Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcnv Structured version   Visualization version   GIF version

Theorem xrge0iifcnv 33964
Description: Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcnv (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xrge0iifcnv
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 0xr 11282 . . . . . . 7 0 ∈ ℝ*
3 pnfxr 11289 . . . . . . 7 +∞ ∈ ℝ*
4 0lepnf 13149 . . . . . . 7 0 ≤ +∞
5 ubicc2 13482 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
62, 3, 4, 5mp3an 1463 . . . . . 6 +∞ ∈ (0[,]+∞)
76a1i 11 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 0) → +∞ ∈ (0[,]+∞))
8 icossicc 13453 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
9 uncom 4133 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = ((0(,]1) ∪ {0})
10 1xr 11294 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
11 0le1 11760 . . . . . . . . . . . . . . 15 0 ≤ 1
12 snunioc 13497 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
132, 10, 11, 12mp3an 1463 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = (0[,]1)
149, 13eqtr3i 2760 . . . . . . . . . . . . 13 ((0(,]1) ∪ {0}) = (0[,]1)
1514eleq2i 2826 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ 𝑥 ∈ (0[,]1))
16 elun 4128 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
1715, 16bitr3i 277 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
18 pm2.53 851 . . . . . . . . . . 11 ((𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
1917, 18sylbi 217 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
20 elsni 4618 . . . . . . . . . 10 (𝑥 ∈ {0} → 𝑥 = 0)
2119, 20syl6 35 . . . . . . . . 9 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 = 0))
2221con1d 145 . . . . . . . 8 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → 𝑥 ∈ (0(,]1)))
2322imp 406 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ (0(,]1))
24 0le0 12341 . . . . . . . . . . . . . 14 0 ≤ 0
25 1re 11235 . . . . . . . . . . . . . . 15 1 ∈ ℝ
26 ltpnf 13136 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → 1 < +∞)
2725, 26ax-mp 5 . . . . . . . . . . . . . 14 1 < +∞
28 iocssioo 13456 . . . . . . . . . . . . . 14 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
292, 3, 24, 27, 28mp4an 693 . . . . . . . . . . . . 13 (0(,]1) ⊆ (0(,)+∞)
30 ioorp 13442 . . . . . . . . . . . . 13 (0(,)+∞) = ℝ+
3129, 30sseqtri 4007 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ+
3231sseli 3954 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ∈ ℝ+)
3332relogcld 26584 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℝ)
3433renegcld 11664 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ)
3534rexrd 11285 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ*)
36 elioc1 13404 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1)))
372, 10, 36mp2an 692 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1))
3837simp3bi 1147 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ≤ 1)
39 1rp 13012 . . . . . . . . . . . . 13 1 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) → 1 ∈ ℝ+)
4132, 40logled 26588 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (𝑥 ≤ 1 ↔ (log‘𝑥) ≤ (log‘1)))
4238, 41mpbid 232 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ (log‘1))
43 log1 26546 . . . . . . . . . 10 (log‘1) = 0
4442, 43breqtrdi 5160 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ 0)
4533le0neg1d 11808 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → ((log‘𝑥) ≤ 0 ↔ 0 ≤ -(log‘𝑥)))
4644, 45mpbid 232 . . . . . . . 8 (𝑥 ∈ (0(,]1) → 0 ≤ -(log‘𝑥))
47 ltpnf 13136 . . . . . . . . 9 (-(log‘𝑥) ∈ ℝ → -(log‘𝑥) < +∞)
4834, 47syl 17 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) < +∞)
49 elico1 13405 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞)))
502, 3, 49mp2an 692 . . . . . . . 8 (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞))
5135, 46, 48, 50syl3anbrc 1344 . . . . . . 7 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ (0[,)+∞))
5223, 51syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,)+∞))
538, 52sselid 3956 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,]+∞))
547, 53ifclda 4536 . . . 4 (𝑥 ∈ (0[,]1) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
5554adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
56 0elunit 13486 . . . . . 6 0 ∈ (0[,]1)
5756a1i 11 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ 𝑦 = +∞) → 0 ∈ (0[,]1))
58 iocssicc 13454 . . . . . 6 (0(,]1) ⊆ (0[,]1)
59 snunico 13496 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → ((0[,)+∞) ∪ {+∞}) = (0[,]+∞))
602, 3, 4, 59mp3an 1463 . . . . . . . . . . . . 13 ((0[,)+∞) ∪ {+∞}) = (0[,]+∞)
6160eleq2i 2826 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ 𝑦 ∈ (0[,]+∞))
62 elun 4128 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
6361, 62bitr3i 277 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
64 pm2.53 851 . . . . . . . . . . 11 ((𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
6563, 64sylbi 217 . . . . . . . . . 10 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
66 elsni 4618 . . . . . . . . . 10 (𝑦 ∈ {+∞} → 𝑦 = +∞)
6765, 66syl6 35 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 = +∞))
6867con1d 145 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 = +∞ → 𝑦 ∈ (0[,)+∞)))
6968imp 406 . . . . . . 7 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ (0[,)+∞))
70 rge0ssre 13473 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
7170sseli 3954 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
7271renegcld 11664 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ∈ ℝ)
7372reefcld 16104 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ)
7473rexrd 11285 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ*)
75 efgt0 16121 . . . . . . . . 9 (-𝑦 ∈ ℝ → 0 < (exp‘-𝑦))
7672, 75syl 17 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 < (exp‘-𝑦))
77 elico1 13405 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
782, 3, 77mp2an 692 . . . . . . . . . . . 12 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
7978simp2bi 1146 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
8071le0neg2d 11809 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → (0 ≤ 𝑦 ↔ -𝑦 ≤ 0))
8179, 80mpbid 232 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ≤ 0)
82 0re 11237 . . . . . . . . . . 11 0 ∈ ℝ
83 efle 16136 . . . . . . . . . . 11 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8472, 82, 83sylancl 586 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8581, 84mpbid 232 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ (exp‘0))
86 ef0 16107 . . . . . . . . 9 (exp‘0) = 1
8785, 86breqtrdi 5160 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ 1)
88 elioc1 13404 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1)))
892, 10, 88mp2an 692 . . . . . . . 8 ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1))
9074, 76, 87, 89syl3anbrc 1344 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ (0(,]1))
9169, 90syl 17 . . . . . 6 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0(,]1))
9258, 91sselid 3956 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0[,]1))
9357, 92ifclda 4536 . . . 4 (𝑦 ∈ (0[,]+∞) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
9493adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,]+∞)) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
95 eqeq2 2747 . . . . . 6 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = 0 ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9695bibi1d 343 . . . . 5 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
97 eqeq2 2747 . . . . . 6 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = (exp‘-𝑦) ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9897bibi1d 343 . . . . 5 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
99 simpr 484 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 = +∞)
100 iftrue 4506 . . . . . . . 8 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
101100eqeq2d 2746 . . . . . . 7 (𝑥 = 0 → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) ↔ 𝑦 = +∞))
10299, 101syl5ibrcom 247 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 → 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
103 ubico 32752 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ¬ +∞ ∈ (0[,)+∞))
10482, 3, 103mp2an 692 . . . . . . . . . 10 ¬ +∞ ∈ (0[,)+∞)
105104nelir 3039 . . . . . . . . 9 +∞ ∉ (0[,)+∞)
106 neleq1 3042 . . . . . . . . . 10 (𝑦 = +∞ → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
107106adantl 481 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
108105, 107mpbiri 258 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 ∉ (0[,)+∞))
109 neleq1 3042 . . . . . . . 8 (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 ∉ (0[,)+∞) ↔ if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
110108, 109syl5ibcom 245 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
111 df-nel 3037 . . . . . . . 8 (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) ↔ ¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
112 iffalse 4509 . . . . . . . . . . . . 13 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
113112adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
114113, 52eqeltrd 2834 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
115114ex 412 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
116115ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
117116con1d 145 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞) → 𝑥 = 0))
118111, 117biimtrid 242 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) → 𝑥 = 0))
119110, 118syld 47 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → 𝑥 = 0))
120102, 119impbid 212 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
121 eqeq2 2747 . . . . . . 7 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
122121bibi2d 342 . . . . . 6 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
123 eqeq2 2747 . . . . . . 7 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = -(log‘𝑥) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
124123bibi2d 342 . . . . . 6 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
12582a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ∈ ℝ)
12669, 76syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 < (exp‘-𝑦))
127125, 126ltned 11371 . . . . . . . . . . 11 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
128127adantll 714 . . . . . . . . . 10 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
129128neneqd 2937 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → ¬ 0 = (exp‘-𝑦))
130 eqeq1 2739 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 = (exp‘-𝑦) ↔ 0 = (exp‘-𝑦)))
131130notbid 318 . . . . . . . . 9 (𝑥 = 0 → (¬ 𝑥 = (exp‘-𝑦) ↔ ¬ 0 = (exp‘-𝑦)))
132129, 131syl5ibrcom 247 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = 0 → ¬ 𝑥 = (exp‘-𝑦)))
133132imp 406 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑥 = (exp‘-𝑦))
134 simplr 768 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑦 = +∞)
135133, 1342falsed 376 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞))
136 eqcom 2742 . . . . . . . . . . 11 (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥)
137136a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥))
138 relogeftb 26545 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ -𝑦 ∈ ℝ) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
13932, 72, 138syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
14033recnd 11263 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℂ)
14171recnd 11263 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
142 negcon2 11536 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
143140, 141, 142syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
144137, 139, 1433bitr2d 307 . . . . . . . . 9 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
14523, 69, 144syl2an 596 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) ∧ (𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
146145an4s 660 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
147146anass1rs 655 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
148122, 124, 135, 147ifbothda 4539 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
14996, 98, 120, 148ifbothda 4539 . . . 4 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
150149adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
1511, 55, 94, 150f1ocnv2d 7660 . 2 (⊤ → (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))))
152151mptru 1547 1 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wnel 3036  cun 3924  wss 3926  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201  ccnv 5653  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  -cneg 11467  +crp 13008  (,)cioo 13362  (,]cioc 13363  [,)cico 13364  [,]cicc 13365  expce 16077  logclog 26515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517
This theorem is referenced by:  xrge0iifiso  33966  xrge0iifmhm  33970  xrge0pluscn  33971
  Copyright terms: Public domain W3C validator