Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcnv Structured version   Visualization version   GIF version

Theorem xrge0iifcnv 33932
Description: Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcnv (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xrge0iifcnv
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 0xr 11308 . . . . . . 7 0 ∈ ℝ*
3 pnfxr 11315 . . . . . . 7 +∞ ∈ ℝ*
4 0lepnf 13175 . . . . . . 7 0 ≤ +∞
5 ubicc2 13505 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
62, 3, 4, 5mp3an 1463 . . . . . 6 +∞ ∈ (0[,]+∞)
76a1i 11 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 0) → +∞ ∈ (0[,]+∞))
8 icossicc 13476 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
9 uncom 4158 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = ((0(,]1) ∪ {0})
10 1xr 11320 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
11 0le1 11786 . . . . . . . . . . . . . . 15 0 ≤ 1
12 snunioc 13520 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
132, 10, 11, 12mp3an 1463 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = (0[,]1)
149, 13eqtr3i 2767 . . . . . . . . . . . . 13 ((0(,]1) ∪ {0}) = (0[,]1)
1514eleq2i 2833 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ 𝑥 ∈ (0[,]1))
16 elun 4153 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
1715, 16bitr3i 277 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
18 pm2.53 852 . . . . . . . . . . 11 ((𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
1917, 18sylbi 217 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
20 elsni 4643 . . . . . . . . . 10 (𝑥 ∈ {0} → 𝑥 = 0)
2119, 20syl6 35 . . . . . . . . 9 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 = 0))
2221con1d 145 . . . . . . . 8 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → 𝑥 ∈ (0(,]1)))
2322imp 406 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ (0(,]1))
24 0le0 12367 . . . . . . . . . . . . . 14 0 ≤ 0
25 1re 11261 . . . . . . . . . . . . . . 15 1 ∈ ℝ
26 ltpnf 13162 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → 1 < +∞)
2725, 26ax-mp 5 . . . . . . . . . . . . . 14 1 < +∞
28 iocssioo 13479 . . . . . . . . . . . . . 14 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
292, 3, 24, 27, 28mp4an 693 . . . . . . . . . . . . 13 (0(,]1) ⊆ (0(,)+∞)
30 ioorp 13465 . . . . . . . . . . . . 13 (0(,)+∞) = ℝ+
3129, 30sseqtri 4032 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ+
3231sseli 3979 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ∈ ℝ+)
3332relogcld 26665 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℝ)
3433renegcld 11690 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ)
3534rexrd 11311 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ*)
36 elioc1 13429 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1)))
372, 10, 36mp2an 692 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1))
3837simp3bi 1148 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ≤ 1)
39 1rp 13038 . . . . . . . . . . . . 13 1 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) → 1 ∈ ℝ+)
4132, 40logled 26669 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (𝑥 ≤ 1 ↔ (log‘𝑥) ≤ (log‘1)))
4238, 41mpbid 232 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ (log‘1))
43 log1 26627 . . . . . . . . . 10 (log‘1) = 0
4442, 43breqtrdi 5184 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ 0)
4533le0neg1d 11834 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → ((log‘𝑥) ≤ 0 ↔ 0 ≤ -(log‘𝑥)))
4644, 45mpbid 232 . . . . . . . 8 (𝑥 ∈ (0(,]1) → 0 ≤ -(log‘𝑥))
47 ltpnf 13162 . . . . . . . . 9 (-(log‘𝑥) ∈ ℝ → -(log‘𝑥) < +∞)
4834, 47syl 17 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) < +∞)
49 elico1 13430 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞)))
502, 3, 49mp2an 692 . . . . . . . 8 (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞))
5135, 46, 48, 50syl3anbrc 1344 . . . . . . 7 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ (0[,)+∞))
5223, 51syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,)+∞))
538, 52sselid 3981 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,]+∞))
547, 53ifclda 4561 . . . 4 (𝑥 ∈ (0[,]1) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
5554adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
56 0elunit 13509 . . . . . 6 0 ∈ (0[,]1)
5756a1i 11 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ 𝑦 = +∞) → 0 ∈ (0[,]1))
58 iocssicc 13477 . . . . . 6 (0(,]1) ⊆ (0[,]1)
59 snunico 13519 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → ((0[,)+∞) ∪ {+∞}) = (0[,]+∞))
602, 3, 4, 59mp3an 1463 . . . . . . . . . . . . 13 ((0[,)+∞) ∪ {+∞}) = (0[,]+∞)
6160eleq2i 2833 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ 𝑦 ∈ (0[,]+∞))
62 elun 4153 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
6361, 62bitr3i 277 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
64 pm2.53 852 . . . . . . . . . . 11 ((𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
6563, 64sylbi 217 . . . . . . . . . 10 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
66 elsni 4643 . . . . . . . . . 10 (𝑦 ∈ {+∞} → 𝑦 = +∞)
6765, 66syl6 35 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 = +∞))
6867con1d 145 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 = +∞ → 𝑦 ∈ (0[,)+∞)))
6968imp 406 . . . . . . 7 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ (0[,)+∞))
70 rge0ssre 13496 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
7170sseli 3979 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
7271renegcld 11690 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ∈ ℝ)
7372reefcld 16124 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ)
7473rexrd 11311 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ*)
75 efgt0 16139 . . . . . . . . 9 (-𝑦 ∈ ℝ → 0 < (exp‘-𝑦))
7672, 75syl 17 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 < (exp‘-𝑦))
77 elico1 13430 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
782, 3, 77mp2an 692 . . . . . . . . . . . 12 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
7978simp2bi 1147 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
8071le0neg2d 11835 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → (0 ≤ 𝑦 ↔ -𝑦 ≤ 0))
8179, 80mpbid 232 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ≤ 0)
82 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
83 efle 16154 . . . . . . . . . . 11 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8472, 82, 83sylancl 586 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8581, 84mpbid 232 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ (exp‘0))
86 ef0 16127 . . . . . . . . 9 (exp‘0) = 1
8785, 86breqtrdi 5184 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ 1)
88 elioc1 13429 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1)))
892, 10, 88mp2an 692 . . . . . . . 8 ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1))
9074, 76, 87, 89syl3anbrc 1344 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ (0(,]1))
9169, 90syl 17 . . . . . 6 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0(,]1))
9258, 91sselid 3981 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0[,]1))
9357, 92ifclda 4561 . . . 4 (𝑦 ∈ (0[,]+∞) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
9493adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,]+∞)) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
95 eqeq2 2749 . . . . . 6 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = 0 ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9695bibi1d 343 . . . . 5 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
97 eqeq2 2749 . . . . . 6 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = (exp‘-𝑦) ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9897bibi1d 343 . . . . 5 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
99 simpr 484 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 = +∞)
100 iftrue 4531 . . . . . . . 8 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
101100eqeq2d 2748 . . . . . . 7 (𝑥 = 0 → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) ↔ 𝑦 = +∞))
10299, 101syl5ibrcom 247 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 → 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
103 ubico 32777 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ¬ +∞ ∈ (0[,)+∞))
10482, 3, 103mp2an 692 . . . . . . . . . 10 ¬ +∞ ∈ (0[,)+∞)
105104nelir 3049 . . . . . . . . 9 +∞ ∉ (0[,)+∞)
106 neleq1 3052 . . . . . . . . . 10 (𝑦 = +∞ → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
107106adantl 481 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
108105, 107mpbiri 258 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 ∉ (0[,)+∞))
109 neleq1 3052 . . . . . . . 8 (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 ∉ (0[,)+∞) ↔ if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
110108, 109syl5ibcom 245 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
111 df-nel 3047 . . . . . . . 8 (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) ↔ ¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
112 iffalse 4534 . . . . . . . . . . . . 13 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
113112adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
114113, 52eqeltrd 2841 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
115114ex 412 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
116115ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
117116con1d 145 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞) → 𝑥 = 0))
118111, 117biimtrid 242 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) → 𝑥 = 0))
119110, 118syld 47 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → 𝑥 = 0))
120102, 119impbid 212 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
121 eqeq2 2749 . . . . . . 7 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
122121bibi2d 342 . . . . . 6 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
123 eqeq2 2749 . . . . . . 7 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = -(log‘𝑥) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
124123bibi2d 342 . . . . . 6 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
12582a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ∈ ℝ)
12669, 76syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 < (exp‘-𝑦))
127125, 126ltned 11397 . . . . . . . . . . 11 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
128127adantll 714 . . . . . . . . . 10 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
129128neneqd 2945 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → ¬ 0 = (exp‘-𝑦))
130 eqeq1 2741 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 = (exp‘-𝑦) ↔ 0 = (exp‘-𝑦)))
131130notbid 318 . . . . . . . . 9 (𝑥 = 0 → (¬ 𝑥 = (exp‘-𝑦) ↔ ¬ 0 = (exp‘-𝑦)))
132129, 131syl5ibrcom 247 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = 0 → ¬ 𝑥 = (exp‘-𝑦)))
133132imp 406 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑥 = (exp‘-𝑦))
134 simplr 769 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑦 = +∞)
135133, 1342falsed 376 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞))
136 eqcom 2744 . . . . . . . . . . 11 (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥)
137136a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥))
138 relogeftb 26626 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ -𝑦 ∈ ℝ) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
13932, 72, 138syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
14033recnd 11289 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℂ)
14171recnd 11289 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
142 negcon2 11562 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
143140, 141, 142syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
144137, 139, 1433bitr2d 307 . . . . . . . . 9 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
14523, 69, 144syl2an 596 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) ∧ (𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
146145an4s 660 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
147146anass1rs 655 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
148122, 124, 135, 147ifbothda 4564 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
14996, 98, 120, 148ifbothda 4564 . . . 4 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
150149adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
1511, 55, 94, 150f1ocnv2d 7686 . 2 (⊤ → (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))))
152151mptru 1547 1 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wne 2940  wnel 3046  cun 3949  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  ccnv 5684  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  -cneg 11493  +crp 13034  (,)cioo 13387  (,]cioc 13388  [,)cico 13389  [,]cicc 13390  expce 16097  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598
This theorem is referenced by:  xrge0iifiso  33934  xrge0iifmhm  33938  xrge0pluscn  33939
  Copyright terms: Public domain W3C validator