Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcnv Structured version   Visualization version   GIF version

Theorem xrge0iifcnv 30447
Description: Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcnv (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xrge0iifcnv
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 0xr 10344 . . . . . . 7 0 ∈ ℝ*
3 pnfxr 10350 . . . . . . 7 +∞ ∈ ℝ*
4 0lepnf 12171 . . . . . . 7 0 ≤ +∞
5 ubicc2 12498 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
62, 3, 4, 5mp3an 1585 . . . . . 6 +∞ ∈ (0[,]+∞)
76a1i 11 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 0) → +∞ ∈ (0[,]+∞))
8 icossicc 12468 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
9 uncom 3921 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = ((0(,]1) ∪ {0})
10 1re 10297 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
1110rexri 10355 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
12 0le1 10809 . . . . . . . . . . . . . . 15 0 ≤ 1
13 snunioc 12512 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
142, 11, 12, 13mp3an 1585 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = (0[,]1)
159, 14eqtr3i 2789 . . . . . . . . . . . . 13 ((0(,]1) ∪ {0}) = (0[,]1)
1615eleq2i 2836 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ 𝑥 ∈ (0[,]1))
17 elun 3917 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
1816, 17bitr3i 268 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
19 pm2.53 877 . . . . . . . . . . 11 ((𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
2018, 19sylbi 208 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
21 elsni 4353 . . . . . . . . . 10 (𝑥 ∈ {0} → 𝑥 = 0)
2220, 21syl6 35 . . . . . . . . 9 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 = 0))
2322con1d 141 . . . . . . . 8 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → 𝑥 ∈ (0(,]1)))
2423imp 395 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ (0(,]1))
25 0le0 11384 . . . . . . . . . . . . . 14 0 ≤ 0
26 ltpnf 12159 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → 1 < +∞)
2710, 26ax-mp 5 . . . . . . . . . . . . . 14 1 < +∞
28 iocssioo 12471 . . . . . . . . . . . . . 14 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
292, 3, 25, 27, 28mp4an 684 . . . . . . . . . . . . 13 (0(,]1) ⊆ (0(,)+∞)
30 ioorp 12458 . . . . . . . . . . . . 13 (0(,)+∞) = ℝ+
3129, 30sseqtri 3799 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ+
3231sseli 3759 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ∈ ℝ+)
3332relogcld 24674 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℝ)
3433renegcld 10715 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ)
3534rexrd 10347 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ*)
36 elioc1 12424 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1)))
372, 11, 36mp2an 683 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1))
3837simp3bi 1177 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ≤ 1)
39 1rp 12037 . . . . . . . . . . . . 13 1 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) → 1 ∈ ℝ+)
4132, 40logled 24678 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (𝑥 ≤ 1 ↔ (log‘𝑥) ≤ (log‘1)))
4238, 41mpbid 223 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ (log‘1))
43 log1 24637 . . . . . . . . . 10 (log‘1) = 0
4442, 43syl6breq 4852 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ 0)
4533le0neg1d 10857 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → ((log‘𝑥) ≤ 0 ↔ 0 ≤ -(log‘𝑥)))
4644, 45mpbid 223 . . . . . . . 8 (𝑥 ∈ (0(,]1) → 0 ≤ -(log‘𝑥))
47 ltpnf 12159 . . . . . . . . 9 (-(log‘𝑥) ∈ ℝ → -(log‘𝑥) < +∞)
4834, 47syl 17 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) < +∞)
49 elico1 12425 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞)))
502, 3, 49mp2an 683 . . . . . . . 8 (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞))
5135, 46, 48, 50syl3anbrc 1443 . . . . . . 7 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ (0[,)+∞))
5224, 51syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,)+∞))
538, 52sseldi 3761 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,]+∞))
547, 53ifclda 4279 . . . 4 (𝑥 ∈ (0[,]1) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
5554adantl 473 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
56 0elunit 12500 . . . . . 6 0 ∈ (0[,]1)
5756a1i 11 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ 𝑦 = +∞) → 0 ∈ (0[,]1))
58 iocssicc 12469 . . . . . 6 (0(,]1) ⊆ (0[,]1)
59 snunico 12511 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → ((0[,)+∞) ∪ {+∞}) = (0[,]+∞))
602, 3, 4, 59mp3an 1585 . . . . . . . . . . . . 13 ((0[,)+∞) ∪ {+∞}) = (0[,]+∞)
6160eleq2i 2836 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ 𝑦 ∈ (0[,]+∞))
62 elun 3917 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
6361, 62bitr3i 268 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
64 pm2.53 877 . . . . . . . . . . 11 ((𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
6563, 64sylbi 208 . . . . . . . . . 10 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
66 elsni 4353 . . . . . . . . . 10 (𝑦 ∈ {+∞} → 𝑦 = +∞)
6765, 66syl6 35 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 = +∞))
6867con1d 141 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 = +∞ → 𝑦 ∈ (0[,)+∞)))
6968imp 395 . . . . . . 7 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ (0[,)+∞))
70 rge0ssre 12489 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
7170sseli 3759 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
7271renegcld 10715 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ∈ ℝ)
7372reefcld 15114 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ)
7473rexrd 10347 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ*)
75 efgt0 15129 . . . . . . . . 9 (-𝑦 ∈ ℝ → 0 < (exp‘-𝑦))
7672, 75syl 17 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 < (exp‘-𝑦))
77 elico1 12425 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
782, 3, 77mp2an 683 . . . . . . . . . . . 12 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
7978simp2bi 1176 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
8071le0neg2d 10858 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → (0 ≤ 𝑦 ↔ -𝑦 ≤ 0))
8179, 80mpbid 223 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ≤ 0)
82 0re 10299 . . . . . . . . . . 11 0 ∈ ℝ
83 efle 15144 . . . . . . . . . . 11 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8472, 82, 83sylancl 580 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8581, 84mpbid 223 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ (exp‘0))
86 ef0 15117 . . . . . . . . 9 (exp‘0) = 1
8785, 86syl6breq 4852 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ 1)
88 elioc1 12424 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1)))
892, 11, 88mp2an 683 . . . . . . . 8 ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1))
9074, 76, 87, 89syl3anbrc 1443 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ (0(,]1))
9169, 90syl 17 . . . . . 6 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0(,]1))
9258, 91sseldi 3761 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0[,]1))
9357, 92ifclda 4279 . . . 4 (𝑦 ∈ (0[,]+∞) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
9493adantl 473 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,]+∞)) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
95 eqeq2 2776 . . . . . 6 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = 0 ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9695bibi1d 334 . . . . 5 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
97 eqeq2 2776 . . . . . 6 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = (exp‘-𝑦) ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9897bibi1d 334 . . . . 5 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
99 simpr 477 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 = +∞)
100 iftrue 4251 . . . . . . . 8 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
101100eqeq2d 2775 . . . . . . 7 (𝑥 = 0 → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) ↔ 𝑦 = +∞))
10299, 101syl5ibrcom 238 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 → 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
103 ubico 30007 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ¬ +∞ ∈ (0[,)+∞))
10482, 3, 103mp2an 683 . . . . . . . . . 10 ¬ +∞ ∈ (0[,)+∞)
105104nelir 3043 . . . . . . . . 9 +∞ ∉ (0[,)+∞)
106 neleq1 3045 . . . . . . . . . 10 (𝑦 = +∞ → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
107106adantl 473 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
108105, 107mpbiri 249 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 ∉ (0[,)+∞))
109 neleq1 3045 . . . . . . . 8 (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 ∉ (0[,)+∞) ↔ if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
110108, 109syl5ibcom 236 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
111 df-nel 3041 . . . . . . . 8 (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) ↔ ¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
112 iffalse 4254 . . . . . . . . . . . . 13 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
113112adantl 473 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
114113, 52eqeltrd 2844 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
115114ex 401 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
116115ad2antrr 717 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
117116con1d 141 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞) → 𝑥 = 0))
118111, 117syl5bi 233 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) → 𝑥 = 0))
119110, 118syld 47 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → 𝑥 = 0))
120102, 119impbid 203 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
121 eqeq2 2776 . . . . . . 7 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
122121bibi2d 333 . . . . . 6 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
123 eqeq2 2776 . . . . . . 7 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = -(log‘𝑥) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
124123bibi2d 333 . . . . . 6 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
12582a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ∈ ℝ)
12669, 76syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 < (exp‘-𝑦))
127125, 126ltned 10431 . . . . . . . . . . 11 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
128127adantll 705 . . . . . . . . . 10 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
129128neneqd 2942 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → ¬ 0 = (exp‘-𝑦))
130 eqeq1 2769 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 = (exp‘-𝑦) ↔ 0 = (exp‘-𝑦)))
131130notbid 309 . . . . . . . . 9 (𝑥 = 0 → (¬ 𝑥 = (exp‘-𝑦) ↔ ¬ 0 = (exp‘-𝑦)))
132129, 131syl5ibrcom 238 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = 0 → ¬ 𝑥 = (exp‘-𝑦)))
133132imp 395 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑥 = (exp‘-𝑦))
134 simplr 785 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑦 = +∞)
135133, 1342falsed 367 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞))
136 eqcom 2772 . . . . . . . . . . 11 (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥)
137136a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥))
138 relogeftb 24636 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ -𝑦 ∈ ℝ) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
13932, 72, 138syl2an 589 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
14033recnd 10326 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℂ)
14171recnd 10326 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
142 negcon2 10592 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
143140, 141, 142syl2an 589 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
144137, 139, 1433bitr2d 298 . . . . . . . . 9 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
14524, 69, 144syl2an 589 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) ∧ (𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
146145an4s 650 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
147146anass1rs 645 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
148122, 124, 135, 147ifbothda 4282 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
14996, 98, 120, 148ifbothda 4282 . . . 4 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
150149adantl 473 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
1511, 55, 94, 150f1ocnv2d 7088 . 2 (⊤ → (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))))
152151mptru 1660 1 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wtru 1653  wcel 2155  wne 2937  wnel 3040  cun 3732  wss 3734  ifcif 4245  {csn 4336   class class class wbr 4811  cmpt 4890  ccnv 5278  1-1-ontowf1o 6069  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194  +∞cpnf 10329  *cxr 10331   < clt 10332  cle 10333  -cneg 10525  +crp 12033  (,)cioo 12382  (,]cioc 12383  [,)cico 12384  [,]cicc 12385  expce 15088  logclog 24606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-sin 15096  df-cos 15097  df-pi 15099  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936  df-log 24608
This theorem is referenced by:  xrge0iifiso  30449  xrge0iifmhm  30453  xrge0pluscn  30454
  Copyright terms: Public domain W3C validator