MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssovtx Structured version   Visualization version   GIF version

Theorem nbgrssovtx 29332
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself. Stronger version of nbgrssvtx 29313. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrssovtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssovtx (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})

Proof of Theorem nbgrssovtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgrssovtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrisvtx 29312 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑉)
3 nbgrnself2 29331 . . . . 5 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
4 df-nel 3031 . . . . . 6 (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
5 neleq1 3036 . . . . . 6 (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
64, 5bitr3id 285 . . . . 5 (𝑣 = 𝑋 → (¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
73, 6mpbiri 258 . . . 4 (𝑣 = 𝑋 → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
87necon2ai 2955 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑋)
9 eldifsn 4736 . . 3 (𝑣 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑣𝑉𝑣𝑋))
102, 8, 9sylanbrc 583 . 2 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ (𝑉 ∖ {𝑋}))
1110ssriv 3936 1 (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2110  wne 2926  wnel 3030  cdif 3897  wss 3900  {csn 4574  cfv 6477  (class class class)co 7341  Vtxcvtx 28967   NeighbVtx cnbgr 29303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-nbgr 29304
This theorem is referenced by:  nbgrssvwo2  29333  nbfusgrlevtxm1  29348  uvtxnbgr  29371  nbusgrvtxm1uvtx  29376  nbupgruvtxres  29378
  Copyright terms: Public domain W3C validator