![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrssovtx | Structured version Visualization version GIF version |
Description: The neighbors of a vertex ð form a subset of all vertices except the vertex ð itself. Stronger version of nbgrssvtx 28863. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrssovtx.v | ⢠ð = (Vtxâðº) |
Ref | Expression |
---|---|
nbgrssovtx | ⢠(ðº NeighbVtx ð) â (ð â {ð}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrssovtx.v | . . . 4 ⢠ð = (Vtxâðº) | |
2 | 1 | nbgrisvtx 28862 | . . 3 ⢠(ð£ â (ðº NeighbVtx ð) â ð£ â ð) |
3 | nbgrnself2 28881 | . . . . 5 ⢠ð â (ðº NeighbVtx ð) | |
4 | df-nel 3046 | . . . . . 6 ⢠(ð£ â (ðº NeighbVtx ð) â ¬ ð£ â (ðº NeighbVtx ð)) | |
5 | neleq1 3051 | . . . . . 6 ⢠(ð£ = ð â (ð£ â (ðº NeighbVtx ð) â ð â (ðº NeighbVtx ð))) | |
6 | 4, 5 | bitr3id 284 | . . . . 5 ⢠(ð£ = ð â (¬ ð£ â (ðº NeighbVtx ð) â ð â (ðº NeighbVtx ð))) |
7 | 3, 6 | mpbiri 257 | . . . 4 ⢠(ð£ = ð â ¬ ð£ â (ðº NeighbVtx ð)) |
8 | 7 | necon2ai 2969 | . . 3 ⢠(ð£ â (ðº NeighbVtx ð) â ð£ â ð) |
9 | eldifsn 4791 | . . 3 ⢠(ð£ â (ð â {ð}) â (ð£ â ð ⧠ð£ â ð)) | |
10 | 2, 8, 9 | sylanbrc 582 | . 2 ⢠(ð£ â (ðº NeighbVtx ð) â ð£ â (ð â {ð})) |
11 | 10 | ssriv 3987 | 1 ⢠(ðº NeighbVtx ð) â (ð â {ð}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 â wcel 2105 â wne 2939 â wnel 3045 â cdif 3946 â wss 3949 {csn 4629 âcfv 6544 (class class class)co 7412 Vtxcvtx 28520 NeighbVtx cnbgr 28853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-nbgr 28854 |
This theorem is referenced by: nbgrssvwo2 28883 nbfusgrlevtxm1 28898 uvtxnbgr 28921 nbusgrvtxm1uvtx 28926 nbupgruvtxres 28928 |
Copyright terms: Public domain | W3C validator |