| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrssovtx | Structured version Visualization version GIF version | ||
| Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself. Stronger version of nbgrssvtx 29313. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| nbgrssovtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| nbgrssovtx | ⊢ (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrssovtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | nbgrisvtx 29312 | . . 3 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ 𝑉) |
| 3 | nbgrnself2 29331 | . . . . 5 ⊢ 𝑋 ∉ (𝐺 NeighbVtx 𝑋) | |
| 4 | df-nel 3031 | . . . . . 6 ⊢ (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋)) | |
| 5 | neleq1 3036 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋))) | |
| 6 | 4, 5 | bitr3id 285 | . . . . 5 ⊢ (𝑣 = 𝑋 → (¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋))) |
| 7 | 3, 6 | mpbiri 258 | . . . 4 ⊢ (𝑣 = 𝑋 → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋)) |
| 8 | 7 | necon2ai 2955 | . . 3 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ≠ 𝑋) |
| 9 | eldifsn 4736 | . . 3 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑋)) | |
| 10 | 2, 8, 9 | sylanbrc 583 | . 2 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ (𝑉 ∖ {𝑋})) |
| 11 | 10 | ssriv 3936 | 1 ⊢ (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∉ wnel 3030 ∖ cdif 3897 ⊆ wss 3900 {csn 4574 ‘cfv 6477 (class class class)co 7341 Vtxcvtx 28967 NeighbVtx cnbgr 29303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-nbgr 29304 |
| This theorem is referenced by: nbgrssvwo2 29333 nbfusgrlevtxm1 29348 uvtxnbgr 29371 nbusgrvtxm1uvtx 29376 nbupgruvtxres 29378 |
| Copyright terms: Public domain | W3C validator |