MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssovtx Structured version   Visualization version   GIF version

Theorem nbgrssovtx 29404
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself. Stronger version of nbgrssvtx 29385. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrssovtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssovtx (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})

Proof of Theorem nbgrssovtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgrssovtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrisvtx 29384 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑉)
3 nbgrnself2 29403 . . . . 5 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
4 df-nel 3047 . . . . . 6 (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
5 neleq1 3052 . . . . . 6 (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
64, 5bitr3id 285 . . . . 5 (𝑣 = 𝑋 → (¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
73, 6mpbiri 258 . . . 4 (𝑣 = 𝑋 → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
87necon2ai 2970 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑋)
9 eldifsn 4794 . . 3 (𝑣 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑣𝑉𝑣𝑋))
102, 8, 9sylanbrc 583 . 2 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ (𝑉 ∖ {𝑋}))
1110ssriv 4002 1 (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  wne 2940  wnel 3046  cdif 3963  wss 3966  {csn 4634  cfv 6569  (class class class)co 7438  Vtxcvtx 29039   NeighbVtx cnbgr 29375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-nbgr 29376
This theorem is referenced by:  nbgrssvwo2  29405  nbfusgrlevtxm1  29420  uvtxnbgr  29443  nbusgrvtxm1uvtx  29448  nbupgruvtxres  29450
  Copyright terms: Public domain W3C validator