MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssovtx Structured version   Visualization version   GIF version

Theorem nbgrssovtx 29306
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself. Stronger version of nbgrssvtx 29287. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrssovtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssovtx (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})

Proof of Theorem nbgrssovtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgrssovtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrisvtx 29286 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑉)
3 nbgrnself2 29305 . . . . 5 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
4 df-nel 3036 . . . . . 6 (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
5 neleq1 3041 . . . . . 6 (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
64, 5bitr3id 285 . . . . 5 (𝑣 = 𝑋 → (¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
73, 6mpbiri 258 . . . 4 (𝑣 = 𝑋 → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
87necon2ai 2960 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑋)
9 eldifsn 4766 . . 3 (𝑣 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑣𝑉𝑣𝑋))
102, 8, 9sylanbrc 583 . 2 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ (𝑉 ∖ {𝑋}))
1110ssriv 3967 1 (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  wne 2931  wnel 3035  cdif 3928  wss 3931  {csn 4606  cfv 6541  (class class class)co 7413  Vtxcvtx 28941   NeighbVtx cnbgr 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-nbgr 29278
This theorem is referenced by:  nbgrssvwo2  29307  nbfusgrlevtxm1  29322  uvtxnbgr  29345  nbusgrvtxm1uvtx  29350  nbupgruvtxres  29352
  Copyright terms: Public domain W3C validator