MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssovtx Structured version   Visualization version   GIF version

Theorem nbgrssovtx 29288
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself. Stronger version of nbgrssvtx 29269. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrssovtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssovtx (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})

Proof of Theorem nbgrssovtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgrssovtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrisvtx 29268 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑉)
3 nbgrnself2 29287 . . . . 5 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
4 df-nel 3030 . . . . . 6 (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
5 neleq1 3035 . . . . . 6 (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
64, 5bitr3id 285 . . . . 5 (𝑣 = 𝑋 → (¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
73, 6mpbiri 258 . . . 4 (𝑣 = 𝑋 → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋))
87necon2ai 2954 . . 3 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣𝑋)
9 eldifsn 4750 . . 3 (𝑣 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑣𝑉𝑣𝑋))
102, 8, 9sylanbrc 583 . 2 (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ (𝑉 ∖ {𝑋}))
1110ssriv 3950 1 (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wne 2925  wnel 3029  cdif 3911  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  Vtxcvtx 28923   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-nbgr 29260
This theorem is referenced by:  nbgrssvwo2  29289  nbfusgrlevtxm1  29304  uvtxnbgr  29327  nbusgrvtxm1uvtx  29332  nbupgruvtxres  29334
  Copyright terms: Public domain W3C validator