![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrssovtx | Structured version Visualization version GIF version |
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself. Stronger version of nbgrssvtx 29275. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrssovtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrssovtx | ⊢ (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrssovtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | nbgrisvtx 29274 | . . 3 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ 𝑉) |
3 | nbgrnself2 29293 | . . . . 5 ⊢ 𝑋 ∉ (𝐺 NeighbVtx 𝑋) | |
4 | df-nel 3037 | . . . . . 6 ⊢ (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋)) | |
5 | neleq1 3042 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋))) | |
6 | 4, 5 | bitr3id 284 | . . . . 5 ⊢ (𝑣 = 𝑋 → (¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋))) |
7 | 3, 6 | mpbiri 257 | . . . 4 ⊢ (𝑣 = 𝑋 → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑋)) |
8 | 7 | necon2ai 2960 | . . 3 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ≠ 𝑋) |
9 | eldifsn 4785 | . . 3 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑋)) | |
10 | 2, 8, 9 | sylanbrc 581 | . 2 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑋) → 𝑣 ∈ (𝑉 ∖ {𝑋})) |
11 | 10 | ssriv 3982 | 1 ⊢ (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∉ wnel 3036 ∖ cdif 3943 ⊆ wss 3946 {csn 4623 ‘cfv 6546 (class class class)co 7416 Vtxcvtx 28929 NeighbVtx cnbgr 29265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-nbgr 29266 |
This theorem is referenced by: nbgrssvwo2 29295 nbfusgrlevtxm1 29310 uvtxnbgr 29333 nbusgrvtxm1uvtx 29338 nbupgruvtxres 29340 |
Copyright terms: Public domain | W3C validator |