MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtthlem Structured version   Visualization version   GIF version

Theorem sqrtthlem 15018
Description: Lemma for sqrtth 15020. (Contributed by Mario Carneiro, 10-Jul-2013.)
Assertion
Ref Expression
sqrtthlem (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+))

Proof of Theorem sqrtthlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sqrtval 14892 . . 3 (𝐴 ∈ ℂ → (√‘𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
21eqcomd 2743 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴))
3 sqrtcl 15017 . . 3 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
4 sqreu 15016 . . 3 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
5 oveq1 7267 . . . . . 6 (𝑥 = (√‘𝐴) → (𝑥↑2) = ((√‘𝐴)↑2))
65eqeq1d 2739 . . . . 5 (𝑥 = (√‘𝐴) → ((𝑥↑2) = 𝐴 ↔ ((√‘𝐴)↑2) = 𝐴))
7 fveq2 6761 . . . . . 6 (𝑥 = (√‘𝐴) → (ℜ‘𝑥) = (ℜ‘(√‘𝐴)))
87breq2d 5087 . . . . 5 (𝑥 = (√‘𝐴) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐴))))
9 oveq2 7268 . . . . . 6 (𝑥 = (√‘𝐴) → (i · 𝑥) = (i · (√‘𝐴)))
10 neleq1 3052 . . . . . 6 ((i · 𝑥) = (i · (√‘𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐴)) ∉ ℝ+))
119, 10syl 17 . . . . 5 (𝑥 = (√‘𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐴)) ∉ ℝ+))
126, 8, 113anbi123d 1434 . . . 4 (𝑥 = (√‘𝐴) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)))
1312riota2 7243 . . 3 (((√‘𝐴) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → ((((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴)))
143, 4, 13syl2anc 583 . 2 (𝐴 ∈ ℂ → ((((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (√‘𝐴)))
152, 14mpbird 256 1 (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2107  wnel 3047  ∃!wreu 3064   class class class wbr 5075  cfv 6423  crio 7216  (class class class)co 7260  cc 10816  0cc0 10818  ici 10820   · cmul 10823  cle 10957  2c2 11974  +crp 12675  cexp 13726  cre 14752  csqrt 14888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-cnex 10874  ax-resscn 10875  ax-1cn 10876  ax-icn 10877  ax-addcl 10878  ax-addrcl 10879  ax-mulcl 10880  ax-mulrcl 10881  ax-mulcom 10882  ax-addass 10883  ax-mulass 10884  ax-distr 10885  ax-i2m1 10886  ax-1ne0 10887  ax-1rid 10888  ax-rnegex 10889  ax-rrecex 10890  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893  ax-pre-ltadd 10894  ax-pre-mulgt0 10895  ax-pre-sup 10896
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6259  df-on 6260  df-lim 6261  df-suc 6262  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-om 7693  df-2nd 7810  df-frecs 8073  df-wrecs 8104  df-recs 8178  df-rdg 8217  df-er 8461  df-en 8697  df-dom 8698  df-sdom 8699  df-sup 9147  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-sub 11153  df-neg 11154  df-div 11579  df-nn 11920  df-2 11982  df-3 11983  df-n0 12180  df-z 12266  df-uz 12528  df-rp 12676  df-seq 13666  df-exp 13727  df-cj 14754  df-re 14755  df-im 14756  df-sqrt 14890  df-abs 14891
This theorem is referenced by:  sqrtth  15020  sqrtrege0  15021  eqsqrtd  15023
  Copyright terms: Public domain W3C validator