| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnmnfpnf | Structured version Visualization version GIF version | ||
| Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| xrnmnfpnf.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrnmnfpnf.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
| xrnmnfpnf.3 | ⊢ (𝜑 → 𝐴 ≠ -∞) |
| Ref | Expression |
|---|---|
| xrnmnfpnf | ⊢ (𝜑 → 𝐴 = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnmnfpnf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrnmnfpnf.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ -∞) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
| 4 | xrnemnf 13141 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
| 6 | xrnmnfpnf.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
| 7 | pm2.53 851 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞)) | |
| 8 | 5, 6, 7 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ℝcr 11136 +∞cpnf 11274 -∞cmnf 11275 ℝ*cxr 11276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 |
| This theorem is referenced by: infxr 45335 dfxlim2v 45819 xlimliminflimsup 45834 |
| Copyright terms: Public domain | W3C validator |