| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnmnfpnf | Structured version Visualization version GIF version | ||
| Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| xrnmnfpnf.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrnmnfpnf.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
| xrnmnfpnf.3 | ⊢ (𝜑 → 𝐴 ≠ -∞) |
| Ref | Expression |
|---|---|
| xrnmnfpnf | ⊢ (𝜑 → 𝐴 = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnmnfpnf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrnmnfpnf.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ -∞) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
| 4 | xrnemnf 13053 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
| 6 | xrnmnfpnf.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
| 7 | pm2.53 851 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞)) | |
| 8 | 5, 6, 7 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ℝcr 11043 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 |
| This theorem is referenced by: infxr 45356 dfxlim2v 45838 xlimliminflimsup 45853 |
| Copyright terms: Public domain | W3C validator |