Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnmnfpnf Structured version   Visualization version   GIF version

Theorem xrnmnfpnf 45070
Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrnmnfpnf.1 (𝜑𝐴 ∈ ℝ*)
xrnmnfpnf.2 (𝜑 → ¬ 𝐴 ∈ ℝ)
xrnmnfpnf.3 (𝜑𝐴 ≠ -∞)
Assertion
Ref Expression
xrnmnfpnf (𝜑𝐴 = +∞)

Proof of Theorem xrnmnfpnf
StepHypRef Expression
1 xrnmnfpnf.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrnmnfpnf.3 . . . 4 (𝜑𝐴 ≠ -∞)
31, 2jca 511 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xrnemnf 13053 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
53, 4sylib 218 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
6 xrnmnfpnf.2 . 2 (𝜑 → ¬ 𝐴 ∈ ℝ)
7 pm2.53 851 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞))
85, 6, 7sylc 65 1 (𝜑𝐴 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188
This theorem is referenced by:  infxr  45356  dfxlim2v  45838  xlimliminflimsup  45853
  Copyright terms: Public domain W3C validator