Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnmnfpnf Structured version   Visualization version   GIF version

Theorem xrnmnfpnf 40197
Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrnmnfpnf.1 (𝜑𝐴 ∈ ℝ*)
xrnmnfpnf.2 (𝜑 → ¬ 𝐴 ∈ ℝ)
xrnmnfpnf.3 (𝜑𝐴 ≠ -∞)
Assertion
Ref Expression
xrnmnfpnf (𝜑𝐴 = +∞)

Proof of Theorem xrnmnfpnf
StepHypRef Expression
1 xrnmnfpnf.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrnmnfpnf.3 . . . 4 (𝜑𝐴 ≠ -∞)
31, 2jca 507 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xrnemnf 12266 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
53, 4sylib 210 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
6 xrnmnfpnf.2 . 2 (𝜑 → ¬ 𝐴 ∈ ℝ)
7 pm2.53 840 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞))
85, 6, 7sylc 65 1 (𝜑𝐴 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  cr 10273  +∞cpnf 10410  -∞cmnf 10411  *cxr 10412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417
This theorem is referenced by:  infxr  40501  dfxlim2v  40997  xlimliminflimsup  41012
  Copyright terms: Public domain W3C validator