Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnmnfpnf Structured version   Visualization version   GIF version

Theorem xrnmnfpnf 41354
Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrnmnfpnf.1 (𝜑𝐴 ∈ ℝ*)
xrnmnfpnf.2 (𝜑 → ¬ 𝐴 ∈ ℝ)
xrnmnfpnf.3 (𝜑𝐴 ≠ -∞)
Assertion
Ref Expression
xrnmnfpnf (𝜑𝐴 = +∞)

Proof of Theorem xrnmnfpnf
StepHypRef Expression
1 xrnmnfpnf.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrnmnfpnf.3 . . . 4 (𝜑𝐴 ≠ -∞)
31, 2jca 514 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xrnemnf 12515 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
53, 4sylib 220 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
6 xrnmnfpnf.2 . 2 (𝜑 → ¬ 𝐴 ∈ ℝ)
7 pm2.53 847 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞))
85, 6, 7sylc 65 1 (𝜑𝐴 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  cr 10538  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681
This theorem is referenced by:  infxr  41642  dfxlim2v  42135  xlimliminflimsup  42150
  Copyright terms: Public domain W3C validator