MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddivf Structured version   Visualization version   GIF version

Theorem fproddivf 15725
Description: The quotient of two finite products. A version of fproddiv 15699 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph 𝑘𝜑
fproddivf.a (𝜑𝐴 ∈ Fin)
fproddivf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fproddivf.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddivf.ne0 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
fproddivf (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddivf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2902 . . . 4 𝑗(𝐵 / 𝐶)
2 nfcsb1v 3859 . . . . 5 𝑘𝑗 / 𝑘𝐵
3 nfcv 2902 . . . . 5 𝑘 /
4 nfcsb1v 3859 . . . . 5 𝑘𝑗 / 𝑘𝐶
52, 3, 4nfov 7325 . . . 4 𝑘(𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
6 csbeq1a 3848 . . . . 5 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7 csbeq1a 3848 . . . . 5 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
86, 7oveq12d 7313 . . . 4 (𝑘 = 𝑗 → (𝐵 / 𝐶) = (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
91, 5, 8cbvprodi 15655 . . 3 𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
109a1i 11 . 2 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
11 fproddivf.a . . 3 (𝜑𝐴 ∈ Fin)
12 fproddivf.kph . . . . . 6 𝑘𝜑
13 nfvd 1914 . . . . . 6 (𝜑 → Ⅎ𝑘 𝑗𝐴)
1412, 13nfan1 2188 . . . . 5 𝑘(𝜑𝑗𝐴)
152nfel1 2918 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1614, 15nfim 1895 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
17 eleq1w 2816 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1817anbi2d 628 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
196eleq1d 2818 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
2018, 19imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
21 fproddivf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2216, 20, 21chvarfv 2228 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
234nfel1 2918 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
2414, 23nfim 1895 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
257eleq1d 2818 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
2618, 25imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
27 fproddivf.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2824, 26, 27chvarfv 2228 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
29 nfcv 2902 . . . . . 6 𝑘0
304, 29nfne 3040 . . . . 5 𝑘𝑗 / 𝑘𝐶 ≠ 0
3114, 30nfim 1895 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)
327neeq1d 2998 . . . . 5 (𝑘 = 𝑗 → (𝐶 ≠ 0 ↔ 𝑗 / 𝑘𝐶 ≠ 0))
3318, 32imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ≠ 0) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)))
34 fproddivf.ne0 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
3531, 33, 34chvarfv 2228 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)
3611, 22, 28, 35fproddiv 15699 . 2 (𝜑 → ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶) = (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶))
37 nfcv 2902 . . . . . 6 𝑗𝐵
3837, 2, 6cbvprodi 15655 . . . . 5 𝑘𝐴 𝐵 = ∏𝑗𝐴 𝑗 / 𝑘𝐵
3938eqcomi 2742 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵
4039a1i 11 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵)
41 nfcv 2902 . . . . 5 𝑗𝐶
427equcoms 2019 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑗 / 𝑘𝐶)
4342eqcomd 2739 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
444, 41, 43cbvprodi 15655 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶
4544a1i 11 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶)
4640, 45oveq12d 7313 . 2 (𝜑 → (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
4710, 36, 463eqtrd 2777 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2101  wne 2938  csb 3834  (class class class)co 7295  Fincfn 8753  cc 10897  0cc0 10899   / cdiv 11660  cprod 15643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-sup 9229  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-fz 13268  df-fzo 13411  df-seq 13750  df-exp 13811  df-hash 14073  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-clim 15225  df-prod 15644
This theorem is referenced by:  fprodle  15734
  Copyright terms: Public domain W3C validator