![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fproddivf | Structured version Visualization version GIF version |
Description: The quotient of two finite products. A version of fproddiv 15904 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fproddivf.kph | ⊢ Ⅎ𝑘𝜑 |
fproddivf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fproddivf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fproddivf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fproddivf.ne0 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
fproddivf | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑗(𝐵 / 𝐶) | |
2 | nfcsb1v 3918 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
3 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑘 / | |
4 | nfcsb1v 3918 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
5 | 2, 3, 4 | nfov 7438 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
6 | csbeq1a 3907 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
7 | csbeq1a 3907 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
8 | 6, 7 | oveq12d 7426 | . . . 4 ⊢ (𝑘 = 𝑗 → (𝐵 / 𝐶) = (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
9 | 1, 5, 8 | cbvprodi 15860 | . . 3 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
11 | fproddivf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
12 | fproddivf.kph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
13 | nfvd 1918 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑘 𝑗 ∈ 𝐴) | |
14 | 12, 13 | nfan1 2193 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
15 | 2 | nfel1 2919 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
16 | 14, 15 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
17 | eleq1w 2816 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
18 | 17 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
19 | 6 | eleq1d 2818 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
20 | 18, 19 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
21 | fproddivf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
22 | 16, 20, 21 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
23 | 4 | nfel1 2919 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
24 | 14, 23 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
25 | 7 | eleq1d 2818 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
26 | 18, 25 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
27 | fproddivf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
28 | 24, 26, 27 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
29 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
30 | 4, 29 | nfne 3043 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ≠ 0 |
31 | 14, 30 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ≠ 0) |
32 | 7 | neeq1d 3000 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ≠ 0 ↔ ⦋𝑗 / 𝑘⦌𝐶 ≠ 0)) |
33 | 18, 32 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ≠ 0))) |
34 | fproddivf.ne0 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) | |
35 | 31, 33, 34 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ≠ 0) |
36 | 11, 22, 28, 35 | fproddiv 15904 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶)) |
37 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑗𝐵 | |
38 | 37, 2, 6 | cbvprodi 15860 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
39 | 38 | eqcomi 2741 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵 |
40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
41 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
42 | 7 | equcoms 2023 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) |
43 | 42 | eqcomd 2738 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = 𝐶) |
44 | 4, 41, 43 | cbvprodi 15860 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶 |
45 | 44 | a1i 11 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶) |
46 | 40, 45 | oveq12d 7426 | . 2 ⊢ (𝜑 → (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
47 | 10, 36, 46 | 3eqtrd 2776 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ≠ wne 2940 ⦋csb 3893 (class class class)co 7408 Fincfn 8938 ℂcc 11107 0cc0 11109 / cdiv 11870 ∏cprod 15848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-prod 15849 |
This theorem is referenced by: fprodle 15939 |
Copyright terms: Public domain | W3C validator |