MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddivf Structured version   Visualization version   GIF version

Theorem fproddivf 15953
Description: The quotient of two finite products. A version of fproddiv 15927 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph 𝑘𝜑
fproddivf.a (𝜑𝐴 ∈ Fin)
fproddivf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fproddivf.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddivf.ne0 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
fproddivf (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddivf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . 4 𝑗(𝐵 / 𝐶)
2 nfcsb1v 3886 . . . . 5 𝑘𝑗 / 𝑘𝐵
3 nfcv 2891 . . . . 5 𝑘 /
4 nfcsb1v 3886 . . . . 5 𝑘𝑗 / 𝑘𝐶
52, 3, 4nfov 7417 . . . 4 𝑘(𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
6 csbeq1a 3876 . . . . 5 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7 csbeq1a 3876 . . . . 5 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
86, 7oveq12d 7405 . . . 4 (𝑘 = 𝑗 → (𝐵 / 𝐶) = (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
91, 5, 8cbvprodi 15881 . . 3 𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
109a1i 11 . 2 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
11 fproddivf.a . . 3 (𝜑𝐴 ∈ Fin)
12 fproddivf.kph . . . . . 6 𝑘𝜑
13 nfvd 1915 . . . . . 6 (𝜑 → Ⅎ𝑘 𝑗𝐴)
1412, 13nfan1 2201 . . . . 5 𝑘(𝜑𝑗𝐴)
152nfel1 2908 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1614, 15nfim 1896 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
17 eleq1w 2811 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1817anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
196eleq1d 2813 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
2018, 19imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
21 fproddivf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2216, 20, 21chvarfv 2241 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
234nfel1 2908 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
2414, 23nfim 1896 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
257eleq1d 2813 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
2618, 25imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
27 fproddivf.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2824, 26, 27chvarfv 2241 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
29 nfcv 2891 . . . . . 6 𝑘0
304, 29nfne 3026 . . . . 5 𝑘𝑗 / 𝑘𝐶 ≠ 0
3114, 30nfim 1896 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)
327neeq1d 2984 . . . . 5 (𝑘 = 𝑗 → (𝐶 ≠ 0 ↔ 𝑗 / 𝑘𝐶 ≠ 0))
3318, 32imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ≠ 0) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)))
34 fproddivf.ne0 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
3531, 33, 34chvarfv 2241 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)
3611, 22, 28, 35fproddiv 15927 . 2 (𝜑 → ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶) = (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶))
37 nfcv 2891 . . . . . 6 𝑗𝐵
3837, 2, 6cbvprodi 15881 . . . . 5 𝑘𝐴 𝐵 = ∏𝑗𝐴 𝑗 / 𝑘𝐵
3938eqcomi 2738 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵
4039a1i 11 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵)
41 nfcv 2891 . . . . 5 𝑗𝐶
427equcoms 2020 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑗 / 𝑘𝐶)
4342eqcomd 2735 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
444, 41, 43cbvprodi 15881 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶
4544a1i 11 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶)
4640, 45oveq12d 7405 . 2 (𝜑 → (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
4710, 36, 463eqtrd 2768 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  csb 3862  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068   / cdiv 11835  cprod 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870
This theorem is referenced by:  fprodle  15962
  Copyright terms: Public domain W3C validator