MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddivf Structured version   Visualization version   GIF version

Theorem fproddivf 16020
Description: The quotient of two finite products. A version of fproddiv 15994 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph 𝑘𝜑
fproddivf.a (𝜑𝐴 ∈ Fin)
fproddivf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fproddivf.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddivf.ne0 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
fproddivf (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddivf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2903 . . . 4 𝑗(𝐵 / 𝐶)
2 nfcsb1v 3933 . . . . 5 𝑘𝑗 / 𝑘𝐵
3 nfcv 2903 . . . . 5 𝑘 /
4 nfcsb1v 3933 . . . . 5 𝑘𝑗 / 𝑘𝐶
52, 3, 4nfov 7461 . . . 4 𝑘(𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
6 csbeq1a 3922 . . . . 5 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7 csbeq1a 3922 . . . . 5 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
86, 7oveq12d 7449 . . . 4 (𝑘 = 𝑗 → (𝐵 / 𝐶) = (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
91, 5, 8cbvprodi 15948 . . 3 𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
109a1i 11 . 2 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
11 fproddivf.a . . 3 (𝜑𝐴 ∈ Fin)
12 fproddivf.kph . . . . . 6 𝑘𝜑
13 nfvd 1913 . . . . . 6 (𝜑 → Ⅎ𝑘 𝑗𝐴)
1412, 13nfan1 2198 . . . . 5 𝑘(𝜑𝑗𝐴)
152nfel1 2920 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1614, 15nfim 1894 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
17 eleq1w 2822 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1817anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
196eleq1d 2824 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
2018, 19imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
21 fproddivf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2216, 20, 21chvarfv 2238 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
234nfel1 2920 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
2414, 23nfim 1894 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
257eleq1d 2824 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
2618, 25imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
27 fproddivf.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2824, 26, 27chvarfv 2238 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
29 nfcv 2903 . . . . . 6 𝑘0
304, 29nfne 3041 . . . . 5 𝑘𝑗 / 𝑘𝐶 ≠ 0
3114, 30nfim 1894 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)
327neeq1d 2998 . . . . 5 (𝑘 = 𝑗 → (𝐶 ≠ 0 ↔ 𝑗 / 𝑘𝐶 ≠ 0))
3318, 32imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ≠ 0) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)))
34 fproddivf.ne0 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
3531, 33, 34chvarfv 2238 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ≠ 0)
3611, 22, 28, 35fproddiv 15994 . 2 (𝜑 → ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶) = (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶))
37 nfcv 2903 . . . . . 6 𝑗𝐵
3837, 2, 6cbvprodi 15948 . . . . 5 𝑘𝐴 𝐵 = ∏𝑗𝐴 𝑗 / 𝑘𝐵
3938eqcomi 2744 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵
4039a1i 11 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵)
41 nfcv 2903 . . . . 5 𝑗𝐶
427equcoms 2017 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑗 / 𝑘𝐶)
4342eqcomd 2741 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
444, 41, 43cbvprodi 15948 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶
4544a1i 11 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶)
4640, 45oveq12d 7449 . 2 (𝜑 → (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
4710, 36, 463eqtrd 2779 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wne 2938  csb 3908  (class class class)co 7431  Fincfn 8984  cc 11151  0cc0 11153   / cdiv 11918  cprod 15936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937
This theorem is referenced by:  fprodle  16029
  Copyright terms: Public domain W3C validator