MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfima Structured version   Visualization version   GIF version

Theorem nfima 6076
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
nfima.1 𝑥𝐴
nfima.2 𝑥𝐵
Assertion
Ref Expression
nfima 𝑥(𝐴𝐵)

Proof of Theorem nfima
StepHypRef Expression
1 df-ima 5695 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 nfima.1 . . . 4 𝑥𝐴
3 nfima.2 . . . 4 𝑥𝐵
42, 3nfres 5991 . . 3 𝑥(𝐴𝐵)
54nfrn 5958 . 2 𝑥ran (𝐴𝐵)
61, 5nfcxfr 2897 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  ran crn 5683  cres 5684  cima 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695
This theorem is referenced by:  nfimad  6077  csbima12  6087  nfpred  6315  nfsup  9482  nfoi  9545  nfseq  14016  gsum2d2  19936  ptbasfi  23505  mbfposr  25601  itg1climres  25664  limciun  25843  nfseqs  28180  funimass4f  32443  poimirlem16  37142  poimirlem19  37145  aomclem8  42516  areaquad  42675  nfcoll  43724  binomcxplemdvbinom  43821  binomcxplemdvsum  43823  binomcxplemnotnn0  43824  rfcnpre1  44412  rfcnpre2  44424  smfpimcc  46225
  Copyright terms: Public domain W3C validator