MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfima Structured version   Visualization version   GIF version

Theorem nfima 6017
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
nfima.1 𝑥𝐴
nfima.2 𝑥𝐵
Assertion
Ref Expression
nfima 𝑥(𝐴𝐵)

Proof of Theorem nfima
StepHypRef Expression
1 df-ima 5629 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 nfima.1 . . . 4 𝑥𝐴
3 nfima.2 . . . 4 𝑥𝐵
42, 3nfres 5930 . . 3 𝑥(𝐴𝐵)
54nfrn 5892 . 2 𝑥ran (𝐴𝐵)
61, 5nfcxfr 2892 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  ran crn 5617  cres 5618  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  nfimad  6018  csbima12  6028  nfpred  6253  nfsup  9335  nfoi  9400  nfseq  13918  gsum2d2  19887  ptbasfi  23497  mbfposr  25581  itg1climres  25643  limciun  25823  nfseqs  28218  funimass4f  32617  poimirlem16  37682  poimirlem19  37685  aomclem8  43100  areaquad  43255  nfcoll  44295  binomcxplemdvbinom  44392  binomcxplemdvsum  44394  binomcxplemnotnn0  44395  rfcnpre1  45062  rfcnpre2  45074  smfpimcc  46852
  Copyright terms: Public domain W3C validator