![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfima.1 | ⊢ Ⅎ𝑥𝐴 |
nfima.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5713 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfres 6011 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
5 | 4 | nfrn 5977 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
6 | 1, 5 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: nfimad 6098 csbima12 6108 nfpred 6337 nfsup 9520 nfoi 9583 nfseq 14062 gsum2d2 20016 ptbasfi 23610 mbfposr 25706 itg1climres 25769 limciun 25949 nfseqs 28311 funimass4f 32656 poimirlem16 37596 poimirlem19 37599 aomclem8 43018 areaquad 43177 nfcoll 44225 binomcxplemdvbinom 44322 binomcxplemdvsum 44324 binomcxplemnotnn0 44325 rfcnpre1 44919 rfcnpre2 44931 smfpimcc 46729 |
Copyright terms: Public domain | W3C validator |