MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfima Structured version   Visualization version   GIF version

Theorem nfima 6097
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
nfima.1 𝑥𝐴
nfima.2 𝑥𝐵
Assertion
Ref Expression
nfima 𝑥(𝐴𝐵)

Proof of Theorem nfima
StepHypRef Expression
1 df-ima 5713 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 nfima.1 . . . 4 𝑥𝐴
3 nfima.2 . . . 4 𝑥𝐵
42, 3nfres 6011 . . 3 𝑥(𝐴𝐵)
54nfrn 5977 . 2 𝑥ran (𝐴𝐵)
61, 5nfcxfr 2906 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2893  ran crn 5701  cres 5702  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  nfimad  6098  csbima12  6108  nfpred  6337  nfsup  9520  nfoi  9583  nfseq  14062  gsum2d2  20016  ptbasfi  23610  mbfposr  25706  itg1climres  25769  limciun  25949  nfseqs  28311  funimass4f  32656  poimirlem16  37596  poimirlem19  37599  aomclem8  43018  areaquad  43177  nfcoll  44225  binomcxplemdvbinom  44322  binomcxplemdvsum  44324  binomcxplemnotnn0  44325  rfcnpre1  44919  rfcnpre2  44931  smfpimcc  46729
  Copyright terms: Public domain W3C validator