| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfima.1 | ⊢ Ⅎ𝑥𝐴 |
| nfima.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5636 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfres 5936 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| 5 | 4 | nfrn 5898 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
| 6 | 1, 5 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ran crn 5624 ↾ cres 5625 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: nfimad 6024 csbima12 6034 nfpred 6258 nfsup 9360 nfoi 9425 nfseq 13936 gsum2d2 19871 ptbasfi 23484 mbfposr 25569 itg1climres 25631 limciun 25811 nfseqs 28204 funimass4f 32594 poimirlem16 37618 poimirlem19 37621 aomclem8 43037 areaquad 43192 nfcoll 44232 binomcxplemdvbinom 44329 binomcxplemdvsum 44331 binomcxplemnotnn0 44332 rfcnpre1 45000 rfcnpre2 45012 smfpimcc 46793 |
| Copyright terms: Public domain | W3C validator |