![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfima.1 | ⊢ Ⅎ𝑥𝐴 |
nfima.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5702 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfres 6002 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
5 | 4 | nfrn 5966 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
6 | 1, 5 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ran crn 5690 ↾ cres 5691 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: nfimad 6089 csbima12 6099 nfpred 6328 nfsup 9489 nfoi 9552 nfseq 14049 gsum2d2 20007 ptbasfi 23605 mbfposr 25701 itg1climres 25764 limciun 25944 nfseqs 28308 funimass4f 32654 poimirlem16 37623 poimirlem19 37626 aomclem8 43050 areaquad 43205 nfcoll 44252 binomcxplemdvbinom 44349 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 rfcnpre1 44957 rfcnpre2 44969 smfpimcc 46764 |
Copyright terms: Public domain | W3C validator |