![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfima.1 | ⊢ Ⅎ𝑥𝐴 |
nfima.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5695 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfres 5991 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
5 | 4 | nfrn 5958 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
6 | 1, 5 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2879 ran crn 5683 ↾ cres 5684 “ cima 5685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 |
This theorem is referenced by: nfimad 6077 csbima12 6087 nfpred 6315 nfsup 9482 nfoi 9545 nfseq 14016 gsum2d2 19936 ptbasfi 23505 mbfposr 25601 itg1climres 25664 limciun 25843 nfseqs 28180 funimass4f 32443 poimirlem16 37142 poimirlem19 37145 aomclem8 42516 areaquad 42675 nfcoll 43724 binomcxplemdvbinom 43821 binomcxplemdvsum 43823 binomcxplemnotnn0 43824 rfcnpre1 44412 rfcnpre2 44424 smfpimcc 46225 |
Copyright terms: Public domain | W3C validator |