| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfima.1 | ⊢ Ⅎ𝑥𝐴 |
| nfima.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfres 5952 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| 5 | 4 | nfrn 5916 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
| 6 | 1, 5 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: nfimad 6040 csbima12 6050 nfpred 6279 nfsup 9402 nfoi 9467 nfseq 13976 gsum2d2 19904 ptbasfi 23468 mbfposr 25553 itg1climres 25615 limciun 25795 nfseqs 28181 funimass4f 32561 poimirlem16 37630 poimirlem19 37633 aomclem8 43050 areaquad 43205 nfcoll 44245 binomcxplemdvbinom 44342 binomcxplemdvsum 44344 binomcxplemnotnn0 44345 rfcnpre1 45013 rfcnpre2 45025 smfpimcc 46806 |
| Copyright terms: Public domain | W3C validator |