MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfima Structured version   Visualization version   GIF version

Theorem nfima 6055
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
nfima.1 𝑥𝐴
nfima.2 𝑥𝐵
Assertion
Ref Expression
nfima 𝑥(𝐴𝐵)

Proof of Theorem nfima
StepHypRef Expression
1 df-ima 5667 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 nfima.1 . . . 4 𝑥𝐴
3 nfima.2 . . . 4 𝑥𝐵
42, 3nfres 5968 . . 3 𝑥(𝐴𝐵)
54nfrn 5932 . 2 𝑥ran (𝐴𝐵)
61, 5nfcxfr 2896 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2883  ran crn 5655  cres 5656  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  nfimad  6056  csbima12  6066  nfpred  6295  nfsup  9463  nfoi  9528  nfseq  14029  gsum2d2  19955  ptbasfi  23519  mbfposr  25605  itg1climres  25667  limciun  25847  nfseqs  28233  funimass4f  32615  poimirlem16  37660  poimirlem19  37663  aomclem8  43085  areaquad  43240  nfcoll  44280  binomcxplemdvbinom  44377  binomcxplemdvsum  44379  binomcxplemnotnn0  44380  rfcnpre1  45043  rfcnpre2  45055  smfpimcc  46837
  Copyright terms: Public domain W3C validator