Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfima.1 | ⊢ Ⅎ𝑥𝐴 |
nfima.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5602 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfres 5893 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
5 | 4 | nfrn 5861 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
6 | 1, 5 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 ran crn 5590 ↾ cres 5591 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: nfimad 5978 csbima12 5987 nfpred 6207 nfsup 9210 nfoi 9273 nfseq 13731 gsum2d2 19575 ptbasfi 22732 mbfposr 24816 itg1climres 24879 limciun 25058 funimass4f 30972 poimirlem16 35793 poimirlem19 35796 aomclem8 40886 areaquad 41047 nfcoll 41874 binomcxplemdvbinom 41971 binomcxplemdvsum 41973 binomcxplemnotnn0 41974 rfcnpre1 42562 rfcnpre2 42574 smfpimcc 44341 |
Copyright terms: Public domain | W3C validator |