| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfima.1 | ⊢ Ⅎ𝑥𝐴 |
| nfima.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5629 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfres 5930 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| 5 | 4 | nfrn 5892 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
| 6 | 1, 5 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ran crn 5617 ↾ cres 5618 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: nfimad 6018 csbima12 6028 nfpred 6253 nfsup 9335 nfoi 9400 nfseq 13918 gsum2d2 19887 ptbasfi 23497 mbfposr 25581 itg1climres 25643 limciun 25823 nfseqs 28218 funimass4f 32617 poimirlem16 37682 poimirlem19 37685 aomclem8 43100 areaquad 43255 nfcoll 44295 binomcxplemdvbinom 44392 binomcxplemdvsum 44394 binomcxplemnotnn0 44395 rfcnpre1 45062 rfcnpre2 45074 smfpimcc 46852 |
| Copyright terms: Public domain | W3C validator |