MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfima Structured version   Visualization version   GIF version

Theorem nfima 6023
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
nfima.1 𝑥𝐴
nfima.2 𝑥𝐵
Assertion
Ref Expression
nfima 𝑥(𝐴𝐵)

Proof of Theorem nfima
StepHypRef Expression
1 df-ima 5634 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 nfima.1 . . . 4 𝑥𝐴
3 nfima.2 . . . 4 𝑥𝐵
42, 3nfres 5936 . . 3 𝑥(𝐴𝐵)
54nfrn 5898 . 2 𝑥ran (𝐴𝐵)
61, 5nfcxfr 2893 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2880  ran crn 5622  cres 5623  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  nfimad  6024  csbima12  6034  nfpred  6260  nfsup  9344  nfoi  9409  nfseq  13922  gsum2d2  19890  ptbasfi  23499  mbfposr  25583  itg1climres  25645  limciun  25825  nfseqs  28220  funimass4f  32623  poimirlem16  37699  poimirlem19  37702  aomclem8  43181  areaquad  43336  nfcoll  44376  binomcxplemdvbinom  44473  binomcxplemdvsum  44475  binomcxplemnotnn0  44476  rfcnpre1  45143  rfcnpre2  45155  smfpimcc  46933
  Copyright terms: Public domain W3C validator