| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfima | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfima.1 | ⊢ Ⅎ𝑥𝐴 |
| nfima.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5634 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfres 5936 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| 5 | 4 | nfrn 5898 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
| 6 | 1, 5 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 ran crn 5622 ↾ cres 5623 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: nfimad 6024 csbima12 6034 nfpred 6260 nfsup 9344 nfoi 9409 nfseq 13922 gsum2d2 19890 ptbasfi 23499 mbfposr 25583 itg1climres 25645 limciun 25825 nfseqs 28220 funimass4f 32623 poimirlem16 37699 poimirlem19 37702 aomclem8 43181 areaquad 43336 nfcoll 44376 binomcxplemdvbinom 44473 binomcxplemdvsum 44475 binomcxplemnotnn0 44476 rfcnpre1 45143 rfcnpre2 45155 smfpimcc 46933 |
| Copyright terms: Public domain | W3C validator |