Proof of Theorem noseponlem
Step | Hyp | Ref
| Expression |
1 | | nodmon 33853 |
. . . 4
⊢ (𝐴 ∈
No → dom 𝐴
∈ On) |
2 | 1 | 3ad2ant1 1132 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ On) |
3 | | nodmord 33856 |
. . . . . . 7
⊢ (𝐴 ∈
No → Ord dom 𝐴) |
4 | | ordirr 6284 |
. . . . . . 7
⊢ (Ord dom
𝐴 → ¬ dom 𝐴 ∈ dom 𝐴) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈
No → ¬ dom 𝐴 ∈ dom 𝐴) |
6 | 5 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ dom 𝐴 ∈ dom 𝐴) |
7 | | ndmfv 6804 |
. . . . 5
⊢ (¬
dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) = ∅) |
9 | | nosgnn0 33861 |
. . . . . . 7
⊢ ¬
∅ ∈ {1o, 2o} |
10 | | elno3 33858 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No ↔ (𝐵:dom
𝐵⟶{1o,
2o} ∧ dom 𝐵
∈ On)) |
11 | 10 | simplbi 498 |
. . . . . . . . . 10
⊢ (𝐵 ∈
No → 𝐵:dom
𝐵⟶{1o,
2o}) |
12 | 11 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → 𝐵:dom 𝐵⟶{1o,
2o}) |
13 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵) |
14 | 12, 13 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ∈ {1o,
2o}) |
15 | | eleq1 2826 |
. . . . . . . 8
⊢ ((𝐵‘dom 𝐴) = ∅ → ((𝐵‘dom 𝐴) ∈ {1o, 2o}
↔ ∅ ∈ {1o, 2o})) |
16 | 14, 15 | syl5ibcom 244 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → ((𝐵‘dom 𝐴) = ∅ → ∅ ∈
{1o, 2o})) |
17 | 9, 16 | mtoi 198 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ (𝐵‘dom 𝐴) = ∅) |
18 | 17 | neqned 2950 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ≠ ∅) |
19 | 18 | necomd 2999 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → ∅ ≠ (𝐵‘dom 𝐴)) |
20 | 8, 19 | eqnetrd 3011 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)) |
21 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = dom 𝐴 → (𝐴‘𝑥) = (𝐴‘dom 𝐴)) |
22 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = dom 𝐴 → (𝐵‘𝑥) = (𝐵‘dom 𝐴)) |
23 | 21, 22 | neeq12d 3005 |
. . . 4
⊢ (𝑥 = dom 𝐴 → ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴))) |
24 | 23 | rspcev 3561 |
. . 3
⊢ ((dom
𝐴 ∈ On ∧ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)) → ∃𝑥 ∈ On (𝐴‘𝑥) ≠ (𝐵‘𝑥)) |
25 | 2, 20, 24 | syl2anc 584 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → ∃𝑥 ∈ On (𝐴‘𝑥) ≠ (𝐵‘𝑥)) |
26 | | df-ne 2944 |
. . . 4
⊢ ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ ¬ (𝐴‘𝑥) = (𝐵‘𝑥)) |
27 | 26 | rexbii 3181 |
. . 3
⊢
(∃𝑥 ∈ On
(𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴‘𝑥) = (𝐵‘𝑥)) |
28 | | rexnal 3169 |
. . 3
⊢
(∃𝑥 ∈ On
¬ (𝐴‘𝑥) = (𝐵‘𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴‘𝑥) = (𝐵‘𝑥)) |
29 | 27, 28 | bitri 274 |
. 2
⊢
(∃𝑥 ∈ On
(𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴‘𝑥) = (𝐵‘𝑥)) |
30 | 25, 29 | sylib 217 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴‘𝑥) = (𝐵‘𝑥)) |