MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseponlem Structured version   Visualization version   GIF version

Theorem noseponlem 27552
Description: Lemma for nosepon 27553. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
noseponlem ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem noseponlem
StepHypRef Expression
1 nodmon 27538 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
213ad2ant1 1133 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ On)
3 nodmord 27541 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
4 ordirr 6338 . . . . . . 7 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
53, 4syl 17 . . . . . 6 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
653ad2ant1 1133 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ dom 𝐴 ∈ dom 𝐴)
7 ndmfv 6875 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
86, 7syl 17 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) = ∅)
9 nosgnn0 27546 . . . . . . 7 ¬ ∅ ∈ {1o, 2o}
10 elno3 27543 . . . . . . . . . . 11 (𝐵 No ↔ (𝐵:dom 𝐵⟶{1o, 2o} ∧ dom 𝐵 ∈ On))
1110simplbi 497 . . . . . . . . . 10 (𝐵 No 𝐵:dom 𝐵⟶{1o, 2o})
12113ad2ant2 1134 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → 𝐵:dom 𝐵⟶{1o, 2o})
13 simp3 1138 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)
1412, 13ffvelcdmd 7039 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ∈ {1o, 2o})
15 eleq1 2816 . . . . . . . 8 ((𝐵‘dom 𝐴) = ∅ → ((𝐵‘dom 𝐴) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
1614, 15syl5ibcom 245 . . . . . . 7 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ((𝐵‘dom 𝐴) = ∅ → ∅ ∈ {1o, 2o}))
179, 16mtoi 199 . . . . . 6 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ (𝐵‘dom 𝐴) = ∅)
1817neqned 2932 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ≠ ∅)
1918necomd 2980 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∅ ≠ (𝐵‘dom 𝐴))
208, 19eqnetrd 2992 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴))
21 fveq2 6840 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
22 fveq2 6840 . . . . 5 (𝑥 = dom 𝐴 → (𝐵𝑥) = (𝐵‘dom 𝐴))
2321, 22neeq12d 2986 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)))
2423rspcev 3585 . . 3 ((dom 𝐴 ∈ On ∧ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
252, 20, 24syl2anc 584 . 2 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
26 df-ne 2926 . . . 4 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
2726rexbii 3076 . . 3 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
28 rexnal 3082 . . 3 (∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
2927, 28bitri 275 . 2 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
3025, 29sylib 218 1 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4292  {cpr 4587  dom cdm 5631  Ord word 6319  Oncon0 6320  wf 6495  cfv 6499  1oc1o 8404  2oc2o 8405   No csur 27527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1o 8411  df-2o 8412  df-no 27530
This theorem is referenced by:  nosepon  27553
  Copyright terms: Public domain W3C validator