MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseponlem Structured version   Visualization version   GIF version

Theorem noseponlem 27598
Description: Lemma for nosepon 27599. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
noseponlem ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem noseponlem
StepHypRef Expression
1 nodmon 27584 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
213ad2ant1 1133 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ On)
3 nodmord 27587 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
4 ordirr 6319 . . . . . . 7 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
53, 4syl 17 . . . . . 6 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
653ad2ant1 1133 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ dom 𝐴 ∈ dom 𝐴)
7 ndmfv 6849 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
86, 7syl 17 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) = ∅)
9 nosgnn0 27592 . . . . . . 7 ¬ ∅ ∈ {1o, 2o}
10 elno3 27589 . . . . . . . . . . 11 (𝐵 No ↔ (𝐵:dom 𝐵⟶{1o, 2o} ∧ dom 𝐵 ∈ On))
1110simplbi 497 . . . . . . . . . 10 (𝐵 No 𝐵:dom 𝐵⟶{1o, 2o})
12113ad2ant2 1134 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → 𝐵:dom 𝐵⟶{1o, 2o})
13 simp3 1138 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)
1412, 13ffvelcdmd 7013 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ∈ {1o, 2o})
15 eleq1 2819 . . . . . . . 8 ((𝐵‘dom 𝐴) = ∅ → ((𝐵‘dom 𝐴) ∈ {1o, 2o} ↔ ∅ ∈ {1o, 2o}))
1614, 15syl5ibcom 245 . . . . . . 7 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ((𝐵‘dom 𝐴) = ∅ → ∅ ∈ {1o, 2o}))
179, 16mtoi 199 . . . . . 6 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ (𝐵‘dom 𝐴) = ∅)
1817neqned 2935 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ≠ ∅)
1918necomd 2983 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∅ ≠ (𝐵‘dom 𝐴))
208, 19eqnetrd 2995 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴))
21 fveq2 6817 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
22 fveq2 6817 . . . . 5 (𝑥 = dom 𝐴 → (𝐵𝑥) = (𝐵‘dom 𝐴))
2321, 22neeq12d 2989 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)))
2423rspcev 3572 . . 3 ((dom 𝐴 ∈ On ∧ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
252, 20, 24syl2anc 584 . 2 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
26 df-ne 2929 . . . 4 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
2726rexbii 3079 . . 3 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
28 rexnal 3084 . . 3 (∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
2927, 28bitri 275 . 2 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
3025, 29sylib 218 1 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4278  {cpr 4573  dom cdm 5611  Ord word 6300  Oncon0 6301  wf 6472  cfv 6476  1oc1o 8373  2oc2o 8374   No csur 27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-1o 8380  df-2o 8381  df-no 27576
This theorem is referenced by:  nosepon  27599
  Copyright terms: Public domain W3C validator