MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nolt02olem Structured version   Visualization version   GIF version

Theorem nolt02olem 27754
Description: Lemma for nolt02o 27755. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴𝑋. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02olem ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)

Proof of Theorem nolt02olem
StepHypRef Expression
1 nosgnn0 27718 . . . 4 ¬ ∅ ∈ {1o, 2o}
21a1i 11 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → ¬ ∅ ∈ {1o, 2o})
3 simpl3 1192 . . . 4 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) = ∅)
4 simpl1 1190 . . . . . 6 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 No )
5 norn 27711 . . . . . 6 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
64, 5syl 17 . . . . 5 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1o, 2o})
7 nofun 27709 . . . . . . 7 (𝐴 No → Fun 𝐴)
873ad2ant1 1132 . . . . . 6 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → Fun 𝐴)
9 fvelrn 7096 . . . . . 6 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
108, 9sylan 580 . . . . 5 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
116, 10sseldd 3996 . . . 4 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ {1o, 2o})
123, 11eqeltrrd 2840 . . 3 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1o, 2o})
132, 12mtand 816 . 2 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴)
14 nodmon 27710 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
15143ad2ant1 1132 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴 ∈ On)
16 simp2 1136 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → 𝑋 ∈ On)
17 ontri1 6420 . . 3 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴))
1815, 16, 17syl2anc 584 . 2 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → (dom 𝐴𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴))
1913, 18mpbird 257 1 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  c0 4339  {cpr 4633  dom cdm 5689  ran crn 5690  Oncon0 6386  Fun wfun 6557  cfv 6563  1oc1o 8498  2oc2o 8499   No csur 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1o 8505  df-2o 8506  df-no 27702
This theorem is referenced by:  nolt02o  27755  nogt01o  27756
  Copyright terms: Public domain W3C validator