Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nolt02olem | Structured version Visualization version GIF version |
Description: Lemma for nolt02o 33635. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴 ⊆ 𝑋. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nolt02olem | ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 33598 | . . . 4 ⊢ ¬ ∅ ∈ {1o, 2o} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ ∅ ∈ {1o, 2o}) |
3 | simpl3 1195 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) = ∅) | |
4 | simpl1 1193 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 ∈ No ) | |
5 | norn 33591 | . . . . . 6 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1o, 2o}) |
7 | nofun 33589 | . . . . . . 7 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
8 | 7 | 3ad2ant1 1135 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → Fun 𝐴) |
9 | fvelrn 6897 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
10 | 8, 9 | sylan 583 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) |
11 | 6, 10 | sseldd 3902 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ {1o, 2o}) |
12 | 3, 11 | eqeltrrd 2839 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1o, 2o}) |
13 | 2, 12 | mtand 816 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴) |
14 | nodmon 33590 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
15 | 14 | 3ad2ant1 1135 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ∈ On) |
16 | simp2 1139 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → 𝑋 ∈ On) | |
17 | ontri1 6247 | . . 3 ⊢ ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) | |
18 | 15, 16, 17 | syl2anc 587 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) |
19 | 13, 18 | mpbird 260 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ∅c0 4237 {cpr 4543 dom cdm 5551 ran crn 5552 Oncon0 6213 Fun wfun 6374 ‘cfv 6380 1oc1o 8195 2oc2o 8196 No csur 33580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-1o 8202 df-2o 8203 df-no 33583 |
This theorem is referenced by: nolt02o 33635 nogt01o 33636 |
Copyright terms: Public domain | W3C validator |