![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nolt02olem | Structured version Visualization version GIF version |
Description: Lemma for nolt02o 27066. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴 ⊆ 𝑋. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nolt02olem | ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 27029 | . . . 4 ⊢ ¬ ∅ ∈ {1o, 2o} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ ∅ ∈ {1o, 2o}) |
3 | simpl3 1194 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) = ∅) | |
4 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 ∈ No ) | |
5 | norn 27022 | . . . . . 6 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1o, 2o}) |
7 | nofun 27020 | . . . . . . 7 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
8 | 7 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → Fun 𝐴) |
9 | fvelrn 7031 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
10 | 8, 9 | sylan 581 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) |
11 | 6, 10 | sseldd 3949 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ {1o, 2o}) |
12 | 3, 11 | eqeltrrd 2835 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1o, 2o}) |
13 | 2, 12 | mtand 815 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴) |
14 | nodmon 27021 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
15 | 14 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ∈ On) |
16 | simp2 1138 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → 𝑋 ∈ On) | |
17 | ontri1 6355 | . . 3 ⊢ ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) | |
18 | 15, 16, 17 | syl2anc 585 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) |
19 | 13, 18 | mpbird 257 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3914 ∅c0 4286 {cpr 4592 dom cdm 5637 ran crn 5638 Oncon0 6321 Fun wfun 6494 ‘cfv 6500 1oc1o 8409 2oc2o 8410 No csur 27011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-1o 8416 df-2o 8417 df-no 27014 |
This theorem is referenced by: nolt02o 27066 nogt01o 27067 |
Copyright terms: Public domain | W3C validator |