MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nolt02olem Structured version   Visualization version   GIF version

Theorem nolt02olem 27194
Description: Lemma for nolt02o 27195. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴𝑋. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02olem ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)

Proof of Theorem nolt02olem
StepHypRef Expression
1 nosgnn0 27158 . . . 4 ¬ ∅ ∈ {1o, 2o}
21a1i 11 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → ¬ ∅ ∈ {1o, 2o})
3 simpl3 1193 . . . 4 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) = ∅)
4 simpl1 1191 . . . . . 6 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 No )
5 norn 27151 . . . . . 6 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
64, 5syl 17 . . . . 5 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1o, 2o})
7 nofun 27149 . . . . . . 7 (𝐴 No → Fun 𝐴)
873ad2ant1 1133 . . . . . 6 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → Fun 𝐴)
9 fvelrn 7078 . . . . . 6 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
108, 9sylan 580 . . . . 5 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
116, 10sseldd 3983 . . . 4 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ {1o, 2o})
123, 11eqeltrrd 2834 . . 3 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1o, 2o})
132, 12mtand 814 . 2 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴)
14 nodmon 27150 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
15143ad2ant1 1133 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴 ∈ On)
16 simp2 1137 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → 𝑋 ∈ On)
17 ontri1 6398 . . 3 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴))
1815, 16, 17syl2anc 584 . 2 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → (dom 𝐴𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴))
1913, 18mpbird 256 1 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3948  c0 4322  {cpr 4630  dom cdm 5676  ran crn 5677  Oncon0 6364  Fun wfun 6537  cfv 6543  1oc1o 8458  2oc2o 8459   No csur 27140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1o 8465  df-2o 8466  df-no 27143
This theorem is referenced by:  nolt02o  27195  nogt01o  27196
  Copyright terms: Public domain W3C validator