Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolt02olem Structured version   Visualization version   GIF version

Theorem nolt02olem 33634
Description: Lemma for nolt02o 33635. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴𝑋. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02olem ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)

Proof of Theorem nolt02olem
StepHypRef Expression
1 nosgnn0 33598 . . . 4 ¬ ∅ ∈ {1o, 2o}
21a1i 11 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → ¬ ∅ ∈ {1o, 2o})
3 simpl3 1195 . . . 4 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) = ∅)
4 simpl1 1193 . . . . . 6 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 No )
5 norn 33591 . . . . . 6 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
64, 5syl 17 . . . . 5 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1o, 2o})
7 nofun 33589 . . . . . . 7 (𝐴 No → Fun 𝐴)
873ad2ant1 1135 . . . . . 6 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → Fun 𝐴)
9 fvelrn 6897 . . . . . 6 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
108, 9sylan 583 . . . . 5 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
116, 10sseldd 3902 . . . 4 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ {1o, 2o})
123, 11eqeltrrd 2839 . . 3 (((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1o, 2o})
132, 12mtand 816 . 2 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴)
14 nodmon 33590 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
15143ad2ant1 1135 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴 ∈ On)
16 simp2 1139 . . 3 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → 𝑋 ∈ On)
17 ontri1 6247 . . 3 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴))
1815, 16, 17syl2anc 587 . 2 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → (dom 𝐴𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴))
1913, 18mpbird 260 1 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wss 3866  c0 4237  {cpr 4543  dom cdm 5551  ran crn 5552  Oncon0 6213  Fun wfun 6374  cfv 6380  1oc1o 8195  2oc2o 8196   No csur 33580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-1o 8202  df-2o 8203  df-no 33583
This theorem is referenced by:  nolt02o  33635  nogt01o  33636
  Copyright terms: Public domain W3C validator