![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nolt02olem | Structured version Visualization version GIF version |
Description: Lemma for nolt02o 27578. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴 ⊆ 𝑋. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nolt02olem | ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 27541 | . . . 4 ⊢ ¬ ∅ ∈ {1o, 2o} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ ∅ ∈ {1o, 2o}) |
3 | simpl3 1190 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) = ∅) | |
4 | simpl1 1188 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 ∈ No ) | |
5 | norn 27534 | . . . . . 6 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1o, 2o}) |
7 | nofun 27532 | . . . . . . 7 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
8 | 7 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → Fun 𝐴) |
9 | fvelrn 7071 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
10 | 8, 9 | sylan 579 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) |
11 | 6, 10 | sseldd 3978 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ {1o, 2o}) |
12 | 3, 11 | eqeltrrd 2828 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1o, 2o}) |
13 | 2, 12 | mtand 813 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴) |
14 | nodmon 27533 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
15 | 14 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ∈ On) |
16 | simp2 1134 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → 𝑋 ∈ On) | |
17 | ontri1 6391 | . . 3 ⊢ ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) | |
18 | 15, 16, 17 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) |
19 | 13, 18 | mpbird 257 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 ∅c0 4317 {cpr 4625 dom cdm 5669 ran crn 5670 Oncon0 6357 Fun wfun 6530 ‘cfv 6536 1oc1o 8457 2oc2o 8458 No csur 27523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1o 8464 df-2o 8465 df-no 27526 |
This theorem is referenced by: nolt02o 27578 nogt01o 27579 |
Copyright terms: Public domain | W3C validator |