Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Structured version   Visualization version   GIF version

Theorem olm11 37241
Description: The meet of an ortholattice element with one equals itself. (chm1i 29818 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐵 = (Base‘𝐾)
olm1.m = (meet‘𝐾)
olm1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
olm11 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)

Proof of Theorem olm11
StepHypRef Expression
1 olop 37228 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
21adantr 481 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 olm1.u . . . . . . 7 1 = (1.‘𝐾)
5 eqid 2738 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
63, 4, 5opoc1 37216 . . . . . 6 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
72, 6syl 17 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
87oveq2d 7291 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)))
9 olm1.b . . . . . . 7 𝐵 = (Base‘𝐾)
109, 5opoccl 37208 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
111, 10sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
12 eqid 2738 . . . . . 6 (join‘𝐾) = (join‘𝐾)
139, 12, 3olj01 37239 . . . . 5 ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
1411, 13syldan 591 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
158, 14eqtrd 2778 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋))
1615fveq2d 6778 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
179, 4op1cl 37199 . . . 4 (𝐾 ∈ OP → 1𝐵)
182, 17syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 1𝐵)
19 olm1.m . . . 4 = (meet‘𝐾)
209, 12, 19, 5oldmj4 37238 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵1𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
2118, 20mpd3an3 1461 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
229, 5opococ 37209 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
231, 22sylan 580 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
2416, 21, 233eqtr3d 2786 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  occoc 16970  joincjn 18029  meetcmee 18030  0.cp0 18141  1.cp1 18142  OPcops 37186  OLcol 37188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-oposet 37190  df-ol 37192
This theorem is referenced by:  olm12  37242  lhpmcvr3  38039  trljat1  38180  trljat2  38181  cdlemc1  38205  cdlemc6  38210  cdleme0cp  38228  cdleme0cq  38229  cdleme1  38241  cdleme4  38252  cdleme5  38254  cdleme8  38264  cdleme9  38267  cdleme10  38268  cdleme20c  38325  cdleme20j  38332  cdleme22e  38358  cdleme22eALTN  38359  cdleme30a  38392  cdleme35b  38464  cdleme35e  38467  cdleme42a  38485  trlcoabs2N  38736  trlcolem  38740  cdlemi1  38832  cdlemk4  38848  dia2dimlem1  39078  cdlemn10  39220  dihglbcpreN  39314
  Copyright terms: Public domain W3C validator