| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olm11 | Structured version Visualization version GIF version | ||
| Description: The meet of an ortholattice element with one equals itself. (chm1i 31431 analog.) (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| olm1.b | ⊢ 𝐵 = (Base‘𝐾) |
| olm1.m | ⊢ ∧ = (meet‘𝐾) |
| olm1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| olm11 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39252 | . . . . . . 7 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 4 | olm1.u | . . . . . . 7 ⊢ 1 = (1.‘𝐾) | |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 3, 4, 5 | opoc1 39240 | . . . . . 6 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 7 | 2, 6 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 8 | 7 | oveq2d 7362 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾))) |
| 9 | olm1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | 9, 5 | opoccl 39232 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 11 | 1, 10 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 12 | eqid 2731 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 13 | 9, 12, 3 | olj01 39263 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 14 | 11, 13 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 15 | 8, 14 | eqtrd 2766 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋)) |
| 16 | 15 | fveq2d 6826 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) |
| 17 | 9, 4 | op1cl 39223 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 18 | 2, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
| 19 | olm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 20 | 9, 12, 19, 5 | oldmj4 39262 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 21 | 18, 20 | mpd3an3 1464 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 22 | 9, 5 | opococ 39233 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 23 | 1, 22 | sylan 580 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 24 | 16, 21, 23 | 3eqtr3d 2774 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 occoc 17166 joincjn 18214 meetcmee 18215 0.cp0 18324 1.cp1 18325 OPcops 39210 OLcol 39212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18197 df-poset 18216 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-oposet 39214 df-ol 39216 |
| This theorem is referenced by: olm12 39266 lhpmcvr3 40063 trljat1 40204 trljat2 40205 cdlemc1 40229 cdlemc6 40234 cdleme0cp 40252 cdleme0cq 40253 cdleme1 40265 cdleme4 40276 cdleme5 40278 cdleme8 40288 cdleme9 40291 cdleme10 40292 cdleme20c 40349 cdleme20j 40356 cdleme22e 40382 cdleme22eALTN 40383 cdleme30a 40416 cdleme35b 40488 cdleme35e 40491 cdleme42a 40509 trlcoabs2N 40760 trlcolem 40764 cdlemi1 40856 cdlemk4 40872 dia2dimlem1 41102 cdlemn10 41244 dihglbcpreN 41338 |
| Copyright terms: Public domain | W3C validator |