Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Structured version   Visualization version   GIF version

Theorem olm11 37689
Description: The meet of an ortholattice element with one equals itself. (chm1i 30398 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐵 = (Base‘𝐾)
olm1.m = (meet‘𝐾)
olm1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
olm11 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)

Proof of Theorem olm11
StepHypRef Expression
1 olop 37676 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
21adantr 481 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 eqid 2736 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 olm1.u . . . . . . 7 1 = (1.‘𝐾)
5 eqid 2736 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
63, 4, 5opoc1 37664 . . . . . 6 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
72, 6syl 17 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
87oveq2d 7373 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)))
9 olm1.b . . . . . . 7 𝐵 = (Base‘𝐾)
109, 5opoccl 37656 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
111, 10sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
12 eqid 2736 . . . . . 6 (join‘𝐾) = (join‘𝐾)
139, 12, 3olj01 37687 . . . . 5 ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
1411, 13syldan 591 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
158, 14eqtrd 2776 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋))
1615fveq2d 6846 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
179, 4op1cl 37647 . . . 4 (𝐾 ∈ OP → 1𝐵)
182, 17syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 1𝐵)
19 olm1.m . . . 4 = (meet‘𝐾)
209, 12, 19, 5oldmj4 37686 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵1𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
2118, 20mpd3an3 1462 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
229, 5opococ 37657 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
231, 22sylan 580 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
2416, 21, 233eqtr3d 2784 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  Basecbs 17083  occoc 17141  joincjn 18200  meetcmee 18201  0.cp0 18312  1.cp1 18313  OPcops 37634  OLcol 37636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-oposet 37638  df-ol 37640
This theorem is referenced by:  olm12  37690  lhpmcvr3  38488  trljat1  38629  trljat2  38630  cdlemc1  38654  cdlemc6  38659  cdleme0cp  38677  cdleme0cq  38678  cdleme1  38690  cdleme4  38701  cdleme5  38703  cdleme8  38713  cdleme9  38716  cdleme10  38717  cdleme20c  38774  cdleme20j  38781  cdleme22e  38807  cdleme22eALTN  38808  cdleme30a  38841  cdleme35b  38913  cdleme35e  38916  cdleme42a  38934  trlcoabs2N  39185  trlcolem  39189  cdlemi1  39281  cdlemk4  39297  dia2dimlem1  39527  cdlemn10  39669  dihglbcpreN  39763
  Copyright terms: Public domain W3C validator