Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Structured version   Visualization version   GIF version

Theorem olm11 38829
Description: The meet of an ortholattice element with one equals itself. (chm1i 31338 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐵 = (Base‘𝐾)
olm1.m = (meet‘𝐾)
olm1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
olm11 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)

Proof of Theorem olm11
StepHypRef Expression
1 olop 38816 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
21adantr 479 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 eqid 2725 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 olm1.u . . . . . . 7 1 = (1.‘𝐾)
5 eqid 2725 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
63, 4, 5opoc1 38804 . . . . . 6 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
72, 6syl 17 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
87oveq2d 7435 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)))
9 olm1.b . . . . . . 7 𝐵 = (Base‘𝐾)
109, 5opoccl 38796 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
111, 10sylan 578 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
12 eqid 2725 . . . . . 6 (join‘𝐾) = (join‘𝐾)
139, 12, 3olj01 38827 . . . . 5 ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
1411, 13syldan 589 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
158, 14eqtrd 2765 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋))
1615fveq2d 6900 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
179, 4op1cl 38787 . . . 4 (𝐾 ∈ OP → 1𝐵)
182, 17syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 1𝐵)
19 olm1.m . . . 4 = (meet‘𝐾)
209, 12, 19, 5oldmj4 38826 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵1𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
2118, 20mpd3an3 1458 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
229, 5opococ 38797 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
231, 22sylan 578 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
2416, 21, 233eqtr3d 2773 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17183  occoc 17244  joincjn 18306  meetcmee 18307  0.cp0 18418  1.cp1 18419  OPcops 38774  OLcol 38776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-oposet 38778  df-ol 38780
This theorem is referenced by:  olm12  38830  lhpmcvr3  39628  trljat1  39769  trljat2  39770  cdlemc1  39794  cdlemc6  39799  cdleme0cp  39817  cdleme0cq  39818  cdleme1  39830  cdleme4  39841  cdleme5  39843  cdleme8  39853  cdleme9  39856  cdleme10  39857  cdleme20c  39914  cdleme20j  39921  cdleme22e  39947  cdleme22eALTN  39948  cdleme30a  39981  cdleme35b  40053  cdleme35e  40056  cdleme42a  40074  trlcoabs2N  40325  trlcolem  40329  cdlemi1  40421  cdlemk4  40437  dia2dimlem1  40667  cdlemn10  40809  dihglbcpreN  40903
  Copyright terms: Public domain W3C validator