Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Structured version   Visualization version   GIF version

Theorem olm11 39245
Description: The meet of an ortholattice element with one equals itself. (chm1i 31437 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐵 = (Base‘𝐾)
olm1.m = (meet‘𝐾)
olm1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
olm11 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)

Proof of Theorem olm11
StepHypRef Expression
1 olop 39232 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
21adantr 480 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 eqid 2735 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 olm1.u . . . . . . 7 1 = (1.‘𝐾)
5 eqid 2735 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
63, 4, 5opoc1 39220 . . . . . 6 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
72, 6syl 17 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
87oveq2d 7421 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)))
9 olm1.b . . . . . . 7 𝐵 = (Base‘𝐾)
109, 5opoccl 39212 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
111, 10sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
12 eqid 2735 . . . . . 6 (join‘𝐾) = (join‘𝐾)
139, 12, 3olj01 39243 . . . . 5 ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
1411, 13syldan 591 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
158, 14eqtrd 2770 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋))
1615fveq2d 6880 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
179, 4op1cl 39203 . . . 4 (𝐾 ∈ OP → 1𝐵)
182, 17syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 1𝐵)
19 olm1.m . . . 4 = (meet‘𝐾)
209, 12, 19, 5oldmj4 39242 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵1𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
2118, 20mpd3an3 1464 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
229, 5opococ 39213 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
231, 22sylan 580 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
2416, 21, 233eqtr3d 2778 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  occoc 17279  joincjn 18323  meetcmee 18324  0.cp0 18433  1.cp1 18434  OPcops 39190  OLcol 39192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-oposet 39194  df-ol 39196
This theorem is referenced by:  olm12  39246  lhpmcvr3  40044  trljat1  40185  trljat2  40186  cdlemc1  40210  cdlemc6  40215  cdleme0cp  40233  cdleme0cq  40234  cdleme1  40246  cdleme4  40257  cdleme5  40259  cdleme8  40269  cdleme9  40272  cdleme10  40273  cdleme20c  40330  cdleme20j  40337  cdleme22e  40363  cdleme22eALTN  40364  cdleme30a  40397  cdleme35b  40469  cdleme35e  40472  cdleme42a  40490  trlcoabs2N  40741  trlcolem  40745  cdlemi1  40837  cdlemk4  40853  dia2dimlem1  41083  cdlemn10  41225  dihglbcpreN  41319
  Copyright terms: Public domain W3C validator