Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Structured version   Visualization version   GIF version

Theorem olm11 39209
Description: The meet of an ortholattice element with one equals itself. (chm1i 31485 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐵 = (Base‘𝐾)
olm1.m = (meet‘𝐾)
olm1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
olm11 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)

Proof of Theorem olm11
StepHypRef Expression
1 olop 39196 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
21adantr 480 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 eqid 2735 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
4 olm1.u . . . . . . 7 1 = (1.‘𝐾)
5 eqid 2735 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
63, 4, 5opoc1 39184 . . . . . 6 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
72, 6syl 17 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
87oveq2d 7447 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)))
9 olm1.b . . . . . . 7 𝐵 = (Base‘𝐾)
109, 5opoccl 39176 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
111, 10sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
12 eqid 2735 . . . . . 6 (join‘𝐾) = (join‘𝐾)
139, 12, 3olj01 39207 . . . . 5 ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
1411, 13syldan 591 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋))
158, 14eqtrd 2775 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋))
1615fveq2d 6911 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
179, 4op1cl 39167 . . . 4 (𝐾 ∈ OP → 1𝐵)
182, 17syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 1𝐵)
19 olm1.m . . . 4 = (meet‘𝐾)
209, 12, 19, 5oldmj4 39206 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵1𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
2118, 20mpd3an3 1461 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 1 ))
229, 5opococ 39177 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
231, 22sylan 580 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
2416, 21, 233eqtr3d 2783 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  occoc 17306  joincjn 18369  meetcmee 18370  0.cp0 18481  1.cp1 18482  OPcops 39154  OLcol 39156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-oposet 39158  df-ol 39160
This theorem is referenced by:  olm12  39210  lhpmcvr3  40008  trljat1  40149  trljat2  40150  cdlemc1  40174  cdlemc6  40179  cdleme0cp  40197  cdleme0cq  40198  cdleme1  40210  cdleme4  40221  cdleme5  40223  cdleme8  40233  cdleme9  40236  cdleme10  40237  cdleme20c  40294  cdleme20j  40301  cdleme22e  40327  cdleme22eALTN  40328  cdleme30a  40361  cdleme35b  40433  cdleme35e  40436  cdleme42a  40454  trlcoabs2N  40705  trlcolem  40709  cdlemi1  40801  cdlemk4  40817  dia2dimlem1  41047  cdlemn10  41189  dihglbcpreN  41283
  Copyright terms: Public domain W3C validator