Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Structured version   Visualization version   GIF version

Theorem olm11 38085
Description: The meet of an ortholattice element with one equals itself. (chm1i 30696 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐡 = (Baseβ€˜πΎ)
olm1.m ∧ = (meetβ€˜πΎ)
olm1.u 1 = (1.β€˜πΎ)
Assertion
Ref Expression
olm11 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∧ 1 ) = 𝑋)

Proof of Theorem olm11
StepHypRef Expression
1 olop 38072 . . . . . . 7 (𝐾 ∈ OL β†’ 𝐾 ∈ OP)
21adantr 481 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ 𝐾 ∈ OP)
3 eqid 2732 . . . . . . 7 (0.β€˜πΎ) = (0.β€˜πΎ)
4 olm1.u . . . . . . 7 1 = (1.β€˜πΎ)
5 eqid 2732 . . . . . . 7 (ocβ€˜πΎ) = (ocβ€˜πΎ)
63, 4, 5opoc1 38060 . . . . . 6 (𝐾 ∈ OP β†’ ((ocβ€˜πΎ)β€˜ 1 ) = (0.β€˜πΎ))
72, 6syl 17 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜ 1 ) = (0.β€˜πΎ))
87oveq2d 7421 . . . 4 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 )) = (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)(0.β€˜πΎ)))
9 olm1.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
109, 5opoccl 38052 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜π‘‹) ∈ 𝐡)
111, 10sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜π‘‹) ∈ 𝐡)
12 eqid 2732 . . . . . 6 (joinβ€˜πΎ) = (joinβ€˜πΎ)
139, 12, 3olj01 38083 . . . . 5 ((𝐾 ∈ OL ∧ ((ocβ€˜πΎ)β€˜π‘‹) ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)(0.β€˜πΎ)) = ((ocβ€˜πΎ)β€˜π‘‹))
1411, 13syldan 591 . . . 4 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)(0.β€˜πΎ)) = ((ocβ€˜πΎ)β€˜π‘‹))
158, 14eqtrd 2772 . . 3 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 )) = ((ocβ€˜πΎ)β€˜π‘‹))
1615fveq2d 6892 . 2 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜(((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 ))) = ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘‹)))
179, 4op1cl 38043 . . . 4 (𝐾 ∈ OP β†’ 1 ∈ 𝐡)
182, 17syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ 1 ∈ 𝐡)
19 olm1.m . . . 4 ∧ = (meetβ€˜πΎ)
209, 12, 19, 5oldmj4 38082 . . 3 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡 ∧ 1 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜(((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 ))) = (𝑋 ∧ 1 ))
2118, 20mpd3an3 1462 . 2 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜(((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 ))) = (𝑋 ∧ 1 ))
229, 5opococ 38053 . . 3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘‹)) = 𝑋)
231, 22sylan 580 . 2 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘‹)) = 𝑋)
2416, 21, 233eqtr3d 2780 1 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∧ 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  occoc 17201  joincjn 18260  meetcmee 18261  0.cp0 18372  1.cp1 18373  OPcops 38030  OLcol 38032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-oposet 38034  df-ol 38036
This theorem is referenced by:  olm12  38086  lhpmcvr3  38884  trljat1  39025  trljat2  39026  cdlemc1  39050  cdlemc6  39055  cdleme0cp  39073  cdleme0cq  39074  cdleme1  39086  cdleme4  39097  cdleme5  39099  cdleme8  39109  cdleme9  39112  cdleme10  39113  cdleme20c  39170  cdleme20j  39177  cdleme22e  39203  cdleme22eALTN  39204  cdleme30a  39237  cdleme35b  39309  cdleme35e  39312  cdleme42a  39330  trlcoabs2N  39581  trlcolem  39585  cdlemi1  39677  cdlemk4  39693  dia2dimlem1  39923  cdlemn10  40065  dihglbcpreN  40159
  Copyright terms: Public domain W3C validator