Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Structured version   Visualization version   GIF version

Theorem olm11 38601
Description: The meet of an ortholattice element with one equals itself. (chm1i 31204 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐡 = (Baseβ€˜πΎ)
olm1.m ∧ = (meetβ€˜πΎ)
olm1.u 1 = (1.β€˜πΎ)
Assertion
Ref Expression
olm11 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∧ 1 ) = 𝑋)

Proof of Theorem olm11
StepHypRef Expression
1 olop 38588 . . . . . . 7 (𝐾 ∈ OL β†’ 𝐾 ∈ OP)
21adantr 480 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ 𝐾 ∈ OP)
3 eqid 2724 . . . . . . 7 (0.β€˜πΎ) = (0.β€˜πΎ)
4 olm1.u . . . . . . 7 1 = (1.β€˜πΎ)
5 eqid 2724 . . . . . . 7 (ocβ€˜πΎ) = (ocβ€˜πΎ)
63, 4, 5opoc1 38576 . . . . . 6 (𝐾 ∈ OP β†’ ((ocβ€˜πΎ)β€˜ 1 ) = (0.β€˜πΎ))
72, 6syl 17 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜ 1 ) = (0.β€˜πΎ))
87oveq2d 7418 . . . 4 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 )) = (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)(0.β€˜πΎ)))
9 olm1.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
109, 5opoccl 38568 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜π‘‹) ∈ 𝐡)
111, 10sylan 579 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜π‘‹) ∈ 𝐡)
12 eqid 2724 . . . . . 6 (joinβ€˜πΎ) = (joinβ€˜πΎ)
139, 12, 3olj01 38599 . . . . 5 ((𝐾 ∈ OL ∧ ((ocβ€˜πΎ)β€˜π‘‹) ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)(0.β€˜πΎ)) = ((ocβ€˜πΎ)β€˜π‘‹))
1411, 13syldan 590 . . . 4 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)(0.β€˜πΎ)) = ((ocβ€˜πΎ)β€˜π‘‹))
158, 14eqtrd 2764 . . 3 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 )) = ((ocβ€˜πΎ)β€˜π‘‹))
1615fveq2d 6886 . 2 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜(((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 ))) = ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘‹)))
179, 4op1cl 38559 . . . 4 (𝐾 ∈ OP β†’ 1 ∈ 𝐡)
182, 17syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ 1 ∈ 𝐡)
19 olm1.m . . . 4 ∧ = (meetβ€˜πΎ)
209, 12, 19, 5oldmj4 38598 . . 3 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡 ∧ 1 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜(((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 ))) = (𝑋 ∧ 1 ))
2118, 20mpd3an3 1458 . 2 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜(((ocβ€˜πΎ)β€˜π‘‹)(joinβ€˜πΎ)((ocβ€˜πΎ)β€˜ 1 ))) = (𝑋 ∧ 1 ))
229, 5opococ 38569 . . 3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘‹)) = 𝑋)
231, 22sylan 579 . 2 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ ((ocβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜π‘‹)) = 𝑋)
2416, 21, 233eqtr3d 2772 1 ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∧ 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  β€˜cfv 6534  (class class class)co 7402  Basecbs 17149  occoc 17210  joincjn 18272  meetcmee 18273  0.cp0 18384  1.cp1 18385  OPcops 38546  OLcol 38548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-proset 18256  df-poset 18274  df-lub 18307  df-glb 18308  df-join 18309  df-meet 18310  df-p0 18386  df-p1 18387  df-lat 18393  df-oposet 38550  df-ol 38552
This theorem is referenced by:  olm12  38602  lhpmcvr3  39400  trljat1  39541  trljat2  39542  cdlemc1  39566  cdlemc6  39571  cdleme0cp  39589  cdleme0cq  39590  cdleme1  39602  cdleme4  39613  cdleme5  39615  cdleme8  39625  cdleme9  39628  cdleme10  39629  cdleme20c  39686  cdleme20j  39693  cdleme22e  39719  cdleme22eALTN  39720  cdleme30a  39753  cdleme35b  39825  cdleme35e  39828  cdleme42a  39846  trlcoabs2N  40097  trlcolem  40101  cdlemi1  40193  cdlemk4  40209  dia2dimlem1  40439  cdlemn10  40581  dihglbcpreN  40675
  Copyright terms: Public domain W3C validator