| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olm11 | Structured version Visualization version GIF version | ||
| Description: The meet of an ortholattice element with one equals itself. (chm1i 31475 analog.) (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| olm1.b | ⊢ 𝐵 = (Base‘𝐾) |
| olm1.m | ⊢ ∧ = (meet‘𝐾) |
| olm1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| olm11 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39215 | . . . . . . 7 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 3 | eqid 2737 | . . . . . . 7 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 4 | olm1.u | . . . . . . 7 ⊢ 1 = (1.‘𝐾) | |
| 5 | eqid 2737 | . . . . . . 7 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 3, 4, 5 | opoc1 39203 | . . . . . 6 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 7 | 2, 6 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 8 | 7 | oveq2d 7447 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾))) |
| 9 | olm1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | 9, 5 | opoccl 39195 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 11 | 1, 10 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 12 | eqid 2737 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 13 | 9, 12, 3 | olj01 39226 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 14 | 11, 13 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 15 | 8, 14 | eqtrd 2777 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋)) |
| 16 | 15 | fveq2d 6910 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) |
| 17 | 9, 4 | op1cl 39186 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 18 | 2, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
| 19 | olm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 20 | 9, 12, 19, 5 | oldmj4 39225 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 21 | 18, 20 | mpd3an3 1464 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 22 | 9, 5 | opococ 39196 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 23 | 1, 22 | sylan 580 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 24 | 16, 21, 23 | 3eqtr3d 2785 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 occoc 17305 joincjn 18357 meetcmee 18358 0.cp0 18468 1.cp1 18469 OPcops 39173 OLcol 39175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-oposet 39177 df-ol 39179 |
| This theorem is referenced by: olm12 39229 lhpmcvr3 40027 trljat1 40168 trljat2 40169 cdlemc1 40193 cdlemc6 40198 cdleme0cp 40216 cdleme0cq 40217 cdleme1 40229 cdleme4 40240 cdleme5 40242 cdleme8 40252 cdleme9 40255 cdleme10 40256 cdleme20c 40313 cdleme20j 40320 cdleme22e 40346 cdleme22eALTN 40347 cdleme30a 40380 cdleme35b 40452 cdleme35e 40455 cdleme42a 40473 trlcoabs2N 40724 trlcolem 40728 cdlemi1 40820 cdlemk4 40836 dia2dimlem1 41066 cdlemn10 41208 dihglbcpreN 41302 |
| Copyright terms: Public domain | W3C validator |