| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olm11 | Structured version Visualization version GIF version | ||
| Description: The meet of an ortholattice element with one equals itself. (chm1i 31438 analog.) (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| olm1.b | ⊢ 𝐵 = (Base‘𝐾) |
| olm1.m | ⊢ ∧ = (meet‘𝐾) |
| olm1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| olm11 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39333 | . . . . . . 7 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 4 | olm1.u | . . . . . . 7 ⊢ 1 = (1.‘𝐾) | |
| 5 | eqid 2733 | . . . . . . 7 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 3, 4, 5 | opoc1 39321 | . . . . . 6 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 7 | 2, 6 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 8 | 7 | oveq2d 7368 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾))) |
| 9 | olm1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | 9, 5 | opoccl 39313 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 11 | 1, 10 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 12 | eqid 2733 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 13 | 9, 12, 3 | olj01 39344 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 14 | 11, 13 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 15 | 8, 14 | eqtrd 2768 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋)) |
| 16 | 15 | fveq2d 6832 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) |
| 17 | 9, 4 | op1cl 39304 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 18 | 2, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
| 19 | olm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 20 | 9, 12, 19, 5 | oldmj4 39343 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 21 | 18, 20 | mpd3an3 1464 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 22 | 9, 5 | opococ 39314 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 23 | 1, 22 | sylan 580 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 24 | 16, 21, 23 | 3eqtr3d 2776 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 occoc 17171 joincjn 18219 meetcmee 18220 0.cp0 18329 1.cp1 18330 OPcops 39291 OLcol 39293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18202 df-poset 18221 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-oposet 39295 df-ol 39297 |
| This theorem is referenced by: olm12 39347 lhpmcvr3 40144 trljat1 40285 trljat2 40286 cdlemc1 40310 cdlemc6 40315 cdleme0cp 40333 cdleme0cq 40334 cdleme1 40346 cdleme4 40357 cdleme5 40359 cdleme8 40369 cdleme9 40372 cdleme10 40373 cdleme20c 40430 cdleme20j 40437 cdleme22e 40463 cdleme22eALTN 40464 cdleme30a 40497 cdleme35b 40569 cdleme35e 40572 cdleme42a 40590 trlcoabs2N 40841 trlcolem 40845 cdlemi1 40937 cdlemk4 40953 dia2dimlem1 41183 cdlemn10 41325 dihglbcpreN 41419 |
| Copyright terms: Public domain | W3C validator |