| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olm11 | Structured version Visualization version GIF version | ||
| Description: The meet of an ortholattice element with one equals itself. (chm1i 31418 analog.) (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| olm1.b | ⊢ 𝐵 = (Base‘𝐾) |
| olm1.m | ⊢ ∧ = (meet‘𝐾) |
| olm1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| olm11 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39192 | . . . . . . 7 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 4 | olm1.u | . . . . . . 7 ⊢ 1 = (1.‘𝐾) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 3, 4, 5 | opoc1 39180 | . . . . . 6 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 7 | 2, 6 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
| 8 | 7 | oveq2d 7369 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾))) |
| 9 | olm1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | 9, 5 | opoccl 39172 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 11 | 1, 10 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 12 | eqid 2729 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 13 | 9, 12, 3 | olj01 39203 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 14 | 11, 13 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
| 15 | 8, 14 | eqtrd 2764 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋)) |
| 16 | 15 | fveq2d 6830 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) |
| 17 | 9, 4 | op1cl 39163 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 18 | 2, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
| 19 | olm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 20 | 9, 12, 19, 5 | oldmj4 39202 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 21 | 18, 20 | mpd3an3 1464 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
| 22 | 9, 5 | opococ 39173 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 23 | 1, 22 | sylan 580 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 24 | 16, 21, 23 | 3eqtr3d 2772 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 occoc 17187 joincjn 18235 meetcmee 18236 0.cp0 18345 1.cp1 18346 OPcops 39150 OLcol 39152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-proset 18218 df-poset 18237 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-oposet 39154 df-ol 39156 |
| This theorem is referenced by: olm12 39206 lhpmcvr3 40004 trljat1 40145 trljat2 40146 cdlemc1 40170 cdlemc6 40175 cdleme0cp 40193 cdleme0cq 40194 cdleme1 40206 cdleme4 40217 cdleme5 40219 cdleme8 40229 cdleme9 40232 cdleme10 40233 cdleme20c 40290 cdleme20j 40297 cdleme22e 40323 cdleme22eALTN 40324 cdleme30a 40357 cdleme35b 40429 cdleme35e 40432 cdleme42a 40450 trlcoabs2N 40701 trlcolem 40705 cdlemi1 40797 cdlemk4 40813 dia2dimlem1 41043 cdlemn10 41185 dihglbcpreN 41279 |
| Copyright terms: Public domain | W3C validator |