Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > olm11 | Structured version Visualization version GIF version |
Description: The meet of an ortholattice element with one equals itself. (chm1i 29818 analog.) (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
olm1.b | ⊢ 𝐵 = (Base‘𝐾) |
olm1.m | ⊢ ∧ = (meet‘𝐾) |
olm1.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
olm11 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olop 37228 | . . . . . . 7 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
2 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
3 | eqid 2738 | . . . . . . 7 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
4 | olm1.u | . . . . . . 7 ⊢ 1 = (1.‘𝐾) | |
5 | eqid 2738 | . . . . . . 7 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 3, 4, 5 | opoc1 37216 | . . . . . 6 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
7 | 2, 6 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾)) |
8 | 7 | oveq2d 7291 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾))) |
9 | olm1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
10 | 9, 5 | opoccl 37208 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
11 | 1, 10 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
12 | eqid 2738 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
13 | 9, 12, 3 | olj01 37239 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
14 | 11, 13 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)(0.‘𝐾)) = ((oc‘𝐾)‘𝑋)) |
15 | 8, 14 | eqtrd 2778 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 )) = ((oc‘𝐾)‘𝑋)) |
16 | 15 | fveq2d 6778 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) |
17 | 9, 4 | op1cl 37199 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
18 | 2, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
19 | olm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
20 | 9, 12, 19, 5 | oldmj4 37238 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
21 | 18, 20 | mpd3an3 1461 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘ 1 ))) = (𝑋 ∧ 1 )) |
22 | 9, 5 | opococ 37209 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
23 | 1, 22 | sylan 580 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
24 | 16, 21, 23 | 3eqtr3d 2786 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 occoc 16970 joincjn 18029 meetcmee 18030 0.cp0 18141 1.cp1 18142 OPcops 37186 OLcol 37188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-oposet 37190 df-ol 37192 |
This theorem is referenced by: olm12 37242 lhpmcvr3 38039 trljat1 38180 trljat2 38181 cdlemc1 38205 cdlemc6 38210 cdleme0cp 38228 cdleme0cq 38229 cdleme1 38241 cdleme4 38252 cdleme5 38254 cdleme8 38264 cdleme9 38267 cdleme10 38268 cdleme20c 38325 cdleme20j 38332 cdleme22e 38358 cdleme22eALTN 38359 cdleme30a 38392 cdleme35b 38464 cdleme35e 38467 cdleme42a 38485 trlcoabs2N 38736 trlcolem 38740 cdlemi1 38832 cdlemk4 38848 dia2dimlem1 39078 cdlemn10 39220 dihglbcpreN 39314 |
Copyright terms: Public domain | W3C validator |