Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmj3 Structured version   Visualization version   GIF version

Theorem oldmj3 35025
 Description: De Morgan's law for join in an ortholattice. (chdmj3 28724 analog.) (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmj3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))

Proof of Theorem oldmj3
StepHypRef Expression
1 olop 35016 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
213ad2ant1 1126 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
3 simp3 1131 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 oldmm1.b . . . . 5 𝐵 = (Base‘𝐾)
5 oldmm1.o . . . . 5 = (oc‘𝐾)
64, 5opoccl 34996 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
72, 3, 6syl2anc 565 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
8 oldmm1.j . . . 4 = (join‘𝐾)
9 oldmm1.m . . . 4 = (meet‘𝐾)
104, 8, 9, 5oldmj1 35023 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
117, 10syld3an3 1514 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
124, 5opococ 34997 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
132, 3, 12syl2anc 565 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1413oveq2d 6808 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( ‘( 𝑌))) = (( 𝑋) 𝑌))
1511, 14eqtrd 2804 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ‘cfv 6031  (class class class)co 6792  Basecbs 16063  occoc 16156  joincjn 17151  meetcmee 17152  OPcops 34974  OLcol 34976 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-preset 17135  df-poset 17153  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-lat 17253  df-oposet 34978  df-ol 34980 This theorem is referenced by:  latmassOLD  35031
 Copyright terms: Public domain W3C validator