![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmm4 | Structured version Visualization version GIF version |
Description: De Morgan's law for meet in an ortholattice. (chdmm4 30781 analog.) (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | β’ π΅ = (BaseβπΎ) |
oldmm1.j | β’ β¨ = (joinβπΎ) |
oldmm1.m | β’ β§ = (meetβπΎ) |
oldmm1.o | β’ β₯ = (ocβπΎ) |
Ref | Expression |
---|---|
oldmm4 | β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β(( β₯ βπ) β§ ( β₯ βπ))) = (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olop 38084 | . . . . 5 β’ (πΎ β OL β πΎ β OP) | |
2 | oldmm1.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
3 | oldmm1.o | . . . . . 6 β’ β₯ = (ocβπΎ) | |
4 | 2, 3 | opoccl 38064 | . . . . 5 β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
5 | 1, 4 | sylan 581 | . . . 4 β’ ((πΎ β OL β§ π β π΅) β ( β₯ βπ) β π΅) |
6 | 5 | 3adant2 1132 | . . 3 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ βπ) β π΅) |
7 | oldmm1.j | . . . 4 β’ β¨ = (joinβπΎ) | |
8 | oldmm1.m | . . . 4 β’ β§ = (meetβπΎ) | |
9 | 2, 7, 8, 3 | oldmm2 38088 | . . 3 β’ ((πΎ β OL β§ π β π΅ β§ ( β₯ βπ) β π΅) β ( β₯ β(( β₯ βπ) β§ ( β₯ βπ))) = (π β¨ ( β₯ β( β₯ βπ)))) |
10 | 6, 9 | syld3an3 1410 | . 2 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β(( β₯ βπ) β§ ( β₯ βπ))) = (π β¨ ( β₯ β( β₯ βπ)))) |
11 | 2, 3 | opococ 38065 | . . . . 5 β’ ((πΎ β OP β§ π β π΅) β ( β₯ β( β₯ βπ)) = π) |
12 | 1, 11 | sylan 581 | . . . 4 β’ ((πΎ β OL β§ π β π΅) β ( β₯ β( β₯ βπ)) = π) |
13 | 12 | 3adant2 1132 | . . 3 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β( β₯ βπ)) = π) |
14 | 13 | oveq2d 7425 | . 2 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β (π β¨ ( β₯ β( β₯ βπ))) = (π β¨ π)) |
15 | 10, 14 | eqtrd 2773 | 1 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β(( β₯ βπ) β§ ( β₯ βπ))) = (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 occoc 17205 joincjn 18264 meetcmee 18265 OPcops 38042 OLcol 38044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-proset 18248 df-poset 18266 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-lat 18385 df-oposet 38046 df-ol 38048 |
This theorem is referenced by: oldmj1 38091 omlfh3N 38129 pmapj2N 38800 djhlj 40272 |
Copyright terms: Public domain | W3C validator |