Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm4 Structured version   Visualization version   GIF version

Theorem oldmm4 35029
Description: De Morgan's law for meet in an ortholattice. (chdmm4 28727 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) = (𝑋 𝑌))

Proof of Theorem oldmm4
StepHypRef Expression
1 olop 35023 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 oldmm1.b . . . . . 6 𝐵 = (Base‘𝐾)
3 oldmm1.o . . . . . 6 = (oc‘𝐾)
42, 3opoccl 35003 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
51, 4sylan 569 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
653adant2 1125 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
7 oldmm1.j . . . 4 = (join‘𝐾)
8 oldmm1.m . . . 4 = (meet‘𝐾)
92, 7, 8, 3oldmm2 35027 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( ‘(( 𝑋) ( 𝑌))) = (𝑋 ( ‘( 𝑌))))
106, 9syld3an3 1515 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) = (𝑋 ( ‘( 𝑌))))
112, 3opococ 35004 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
121, 11sylan 569 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
13123adant2 1125 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1413oveq2d 6809 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( ‘( 𝑌))) = (𝑋 𝑌))
1510, 14eqtrd 2805 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  occoc 16157  joincjn 17152  meetcmee 17153  OPcops 34981  OLcol 34983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-lat 17254  df-oposet 34985  df-ol 34987
This theorem is referenced by:  oldmj1  35030  omlfh3N  35068  pmapj2N  35737  djhlj  37211
  Copyright terms: Public domain W3C validator