| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlol 39481 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 2 | olop 39334 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 OPcops 39292 OLcol 39294 HLchlt 39470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-ol 39298 df-oml 39299 df-hlat 39471 |
| This theorem is referenced by: glbconN 39497 glbconxN 39498 hlhgt2 39509 hl0lt1N 39510 hl2at 39525 cvrexch 39540 atcvr0eq 39546 lnnat 39547 atle 39556 cvrat4 39563 athgt 39576 1cvrco 39592 1cvratex 39593 1cvrjat 39595 1cvrat 39596 ps-2 39598 llnn0 39636 lplnn0N 39667 llncvrlpln 39678 lvoln0N 39711 lplncvrlvol 39736 dalemkeop 39745 pmapeq0 39886 pmapglb2N 39891 pmapglb2xN 39892 2atm2atN 39905 polval2N 40026 polsubN 40027 pol1N 40030 2polpmapN 40033 2polvalN 40034 poldmj1N 40048 pmapj2N 40049 2polatN 40052 pnonsingN 40053 ispsubcl2N 40067 polsubclN 40072 poml4N 40073 pmapojoinN 40088 pl42lem1N 40099 lhp2lt 40121 lhp0lt 40123 lhpn0 40124 lhpexnle 40126 lhpoc2N 40135 lhpocnle 40136 lhpj1 40142 lhpmod2i2 40158 lhpmod6i1 40159 lhprelat3N 40160 ltrnatb 40257 trlcl 40284 trlle 40304 cdleme3c 40350 cdleme7e 40367 cdleme22b 40461 cdlemg12e 40767 cdlemg12g 40769 tendoid 40893 tendo0tp 40909 cdlemk39s-id 41060 tendoex 41095 dia0eldmN 41160 dia2dimlem2 41185 dia2dimlem3 41186 docaclN 41244 doca2N 41246 djajN 41257 dib0 41284 dih0 41400 dih0bN 41401 dih0rn 41404 dih1 41406 dih1rn 41407 dih1cnv 41408 dihmeetlem18N 41444 dih1dimatlem 41449 dihlspsnssN 41452 dihlspsnat 41453 dihatexv 41458 dihglb2 41462 dochcl 41473 doch0 41478 doch1 41479 dochvalr3 41483 doch2val2 41484 dochss 41485 dochocss 41486 dochoc 41487 dochnoncon 41511 djhlj 41521 dihjatc 41537 |
| Copyright terms: Public domain | W3C validator |