| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlol 39379 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 2 | olop 39232 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 OPcops 39190 OLcol 39192 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-ol 39196 df-oml 39197 df-hlat 39369 |
| This theorem is referenced by: glbconN 39395 glbconNOLD 39396 glbconxN 39397 hlhgt2 39408 hl0lt1N 39409 hl2at 39424 cvrexch 39439 atcvr0eq 39445 lnnat 39446 atle 39455 cvrat4 39462 athgt 39475 1cvrco 39491 1cvratex 39492 1cvrjat 39494 1cvrat 39495 ps-2 39497 llnn0 39535 lplnn0N 39566 llncvrlpln 39577 lvoln0N 39610 lplncvrlvol 39635 dalemkeop 39644 pmapeq0 39785 pmapglb2N 39790 pmapglb2xN 39791 2atm2atN 39804 polval2N 39925 polsubN 39926 pol1N 39929 2polpmapN 39932 2polvalN 39933 poldmj1N 39947 pmapj2N 39948 2polatN 39951 pnonsingN 39952 ispsubcl2N 39966 polsubclN 39971 poml4N 39972 pmapojoinN 39987 pl42lem1N 39998 lhp2lt 40020 lhp0lt 40022 lhpn0 40023 lhpexnle 40025 lhpoc2N 40034 lhpocnle 40035 lhpj1 40041 lhpmod2i2 40057 lhpmod6i1 40058 lhprelat3N 40059 ltrnatb 40156 trlcl 40183 trlle 40203 cdleme3c 40249 cdleme7e 40266 cdleme22b 40360 cdlemg12e 40666 cdlemg12g 40668 tendoid 40792 tendo0tp 40808 cdlemk39s-id 40959 tendoex 40994 dia0eldmN 41059 dia2dimlem2 41084 dia2dimlem3 41085 docaclN 41143 doca2N 41145 djajN 41156 dib0 41183 dih0 41299 dih0bN 41300 dih0rn 41303 dih1 41305 dih1rn 41306 dih1cnv 41307 dihmeetlem18N 41343 dih1dimatlem 41348 dihlspsnssN 41351 dihlspsnat 41352 dihatexv 41357 dihglb2 41361 dochcl 41372 doch0 41377 doch1 41378 dochvalr3 41382 doch2val2 41383 dochss 41384 dochocss 41385 dochoc 41386 dochnoncon 41410 djhlj 41420 dihjatc 41436 |
| Copyright terms: Public domain | W3C validator |