Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlol 37302 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
2 | olop 37155 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 OPcops 37113 OLcol 37115 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-ol 37119 df-oml 37120 df-hlat 37292 |
This theorem is referenced by: glbconN 37318 glbconxN 37319 hlhgt2 37330 hl0lt1N 37331 hl2at 37346 cvrexch 37361 atcvr0eq 37367 lnnat 37368 atle 37377 cvrat4 37384 athgt 37397 1cvrco 37413 1cvratex 37414 1cvrjat 37416 1cvrat 37417 ps-2 37419 llnn0 37457 lplnn0N 37488 llncvrlpln 37499 lvoln0N 37532 lplncvrlvol 37557 dalemkeop 37566 pmapeq0 37707 pmapglb2N 37712 pmapglb2xN 37713 2atm2atN 37726 polval2N 37847 polsubN 37848 pol1N 37851 2polpmapN 37854 2polvalN 37855 poldmj1N 37869 pmapj2N 37870 2polatN 37873 pnonsingN 37874 ispsubcl2N 37888 polsubclN 37893 poml4N 37894 pmapojoinN 37909 pl42lem1N 37920 lhp2lt 37942 lhp0lt 37944 lhpn0 37945 lhpexnle 37947 lhpoc2N 37956 lhpocnle 37957 lhpj1 37963 lhpmod2i2 37979 lhpmod6i1 37980 lhprelat3N 37981 ltrnatb 38078 trlcl 38105 trlle 38125 cdleme3c 38171 cdleme7e 38188 cdleme22b 38282 cdlemg12e 38588 cdlemg12g 38590 tendoid 38714 tendo0tp 38730 cdlemk39s-id 38881 tendoex 38916 dia0eldmN 38981 dia2dimlem2 39006 dia2dimlem3 39007 docaclN 39065 doca2N 39067 djajN 39078 dib0 39105 dih0 39221 dih0bN 39222 dih0rn 39225 dih1 39227 dih1rn 39228 dih1cnv 39229 dihmeetlem18N 39265 dih1dimatlem 39270 dihlspsnssN 39273 dihlspsnat 39274 dihatexv 39279 dihglb2 39283 dochcl 39294 doch0 39299 doch1 39300 dochvalr3 39304 doch2val2 39305 dochss 39306 dochocss 39307 dochoc 39308 dochnoncon 39332 djhlj 39342 dihjatc 39358 |
Copyright terms: Public domain | W3C validator |