| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlol 39361 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 2 | olop 39214 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OPcops 39172 OLcol 39174 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-ol 39178 df-oml 39179 df-hlat 39351 |
| This theorem is referenced by: glbconN 39377 glbconNOLD 39378 glbconxN 39379 hlhgt2 39390 hl0lt1N 39391 hl2at 39406 cvrexch 39421 atcvr0eq 39427 lnnat 39428 atle 39437 cvrat4 39444 athgt 39457 1cvrco 39473 1cvratex 39474 1cvrjat 39476 1cvrat 39477 ps-2 39479 llnn0 39517 lplnn0N 39548 llncvrlpln 39559 lvoln0N 39592 lplncvrlvol 39617 dalemkeop 39626 pmapeq0 39767 pmapglb2N 39772 pmapglb2xN 39773 2atm2atN 39786 polval2N 39907 polsubN 39908 pol1N 39911 2polpmapN 39914 2polvalN 39915 poldmj1N 39929 pmapj2N 39930 2polatN 39933 pnonsingN 39934 ispsubcl2N 39948 polsubclN 39953 poml4N 39954 pmapojoinN 39969 pl42lem1N 39980 lhp2lt 40002 lhp0lt 40004 lhpn0 40005 lhpexnle 40007 lhpoc2N 40016 lhpocnle 40017 lhpj1 40023 lhpmod2i2 40039 lhpmod6i1 40040 lhprelat3N 40041 ltrnatb 40138 trlcl 40165 trlle 40185 cdleme3c 40231 cdleme7e 40248 cdleme22b 40342 cdlemg12e 40648 cdlemg12g 40650 tendoid 40774 tendo0tp 40790 cdlemk39s-id 40941 tendoex 40976 dia0eldmN 41041 dia2dimlem2 41066 dia2dimlem3 41067 docaclN 41125 doca2N 41127 djajN 41138 dib0 41165 dih0 41281 dih0bN 41282 dih0rn 41285 dih1 41287 dih1rn 41288 dih1cnv 41289 dihmeetlem18N 41325 dih1dimatlem 41330 dihlspsnssN 41333 dihlspsnat 41334 dihatexv 41339 dihglb2 41343 dochcl 41354 doch0 41359 doch1 41360 dochvalr3 41364 doch2val2 41365 dochss 41366 dochocss 41367 dochoc 41368 dochnoncon 41392 djhlj 41402 dihjatc 41418 |
| Copyright terms: Public domain | W3C validator |