| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlol 39339 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 2 | olop 39192 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OPcops 39150 OLcol 39152 HLchlt 39328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-ol 39156 df-oml 39157 df-hlat 39329 |
| This theorem is referenced by: glbconN 39355 glbconNOLD 39356 glbconxN 39357 hlhgt2 39368 hl0lt1N 39369 hl2at 39384 cvrexch 39399 atcvr0eq 39405 lnnat 39406 atle 39415 cvrat4 39422 athgt 39435 1cvrco 39451 1cvratex 39452 1cvrjat 39454 1cvrat 39455 ps-2 39457 llnn0 39495 lplnn0N 39526 llncvrlpln 39537 lvoln0N 39570 lplncvrlvol 39595 dalemkeop 39604 pmapeq0 39745 pmapglb2N 39750 pmapglb2xN 39751 2atm2atN 39764 polval2N 39885 polsubN 39886 pol1N 39889 2polpmapN 39892 2polvalN 39893 poldmj1N 39907 pmapj2N 39908 2polatN 39911 pnonsingN 39912 ispsubcl2N 39926 polsubclN 39931 poml4N 39932 pmapojoinN 39947 pl42lem1N 39958 lhp2lt 39980 lhp0lt 39982 lhpn0 39983 lhpexnle 39985 lhpoc2N 39994 lhpocnle 39995 lhpj1 40001 lhpmod2i2 40017 lhpmod6i1 40018 lhprelat3N 40019 ltrnatb 40116 trlcl 40143 trlle 40163 cdleme3c 40209 cdleme7e 40226 cdleme22b 40320 cdlemg12e 40626 cdlemg12g 40628 tendoid 40752 tendo0tp 40768 cdlemk39s-id 40919 tendoex 40954 dia0eldmN 41019 dia2dimlem2 41044 dia2dimlem3 41045 docaclN 41103 doca2N 41105 djajN 41116 dib0 41143 dih0 41259 dih0bN 41260 dih0rn 41263 dih1 41265 dih1rn 41266 dih1cnv 41267 dihmeetlem18N 41303 dih1dimatlem 41308 dihlspsnssN 41311 dihlspsnat 41312 dihatexv 41317 dihglb2 41321 dochcl 41332 doch0 41337 doch1 41338 dochvalr3 41342 doch2val2 41343 dochss 41344 dochocss 41345 dochoc 41346 dochnoncon 41370 djhlj 41380 dihjatc 41396 |
| Copyright terms: Public domain | W3C validator |