| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlol 39399 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 2 | olop 39252 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 OPcops 39210 OLcol 39212 HLchlt 39388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-ol 39216 df-oml 39217 df-hlat 39389 |
| This theorem is referenced by: glbconN 39415 glbconxN 39416 hlhgt2 39427 hl0lt1N 39428 hl2at 39443 cvrexch 39458 atcvr0eq 39464 lnnat 39465 atle 39474 cvrat4 39481 athgt 39494 1cvrco 39510 1cvratex 39511 1cvrjat 39513 1cvrat 39514 ps-2 39516 llnn0 39554 lplnn0N 39585 llncvrlpln 39596 lvoln0N 39629 lplncvrlvol 39654 dalemkeop 39663 pmapeq0 39804 pmapglb2N 39809 pmapglb2xN 39810 2atm2atN 39823 polval2N 39944 polsubN 39945 pol1N 39948 2polpmapN 39951 2polvalN 39952 poldmj1N 39966 pmapj2N 39967 2polatN 39970 pnonsingN 39971 ispsubcl2N 39985 polsubclN 39990 poml4N 39991 pmapojoinN 40006 pl42lem1N 40017 lhp2lt 40039 lhp0lt 40041 lhpn0 40042 lhpexnle 40044 lhpoc2N 40053 lhpocnle 40054 lhpj1 40060 lhpmod2i2 40076 lhpmod6i1 40077 lhprelat3N 40078 ltrnatb 40175 trlcl 40202 trlle 40222 cdleme3c 40268 cdleme7e 40285 cdleme22b 40379 cdlemg12e 40685 cdlemg12g 40687 tendoid 40811 tendo0tp 40827 cdlemk39s-id 40978 tendoex 41013 dia0eldmN 41078 dia2dimlem2 41103 dia2dimlem3 41104 docaclN 41162 doca2N 41164 djajN 41175 dib0 41202 dih0 41318 dih0bN 41319 dih0rn 41322 dih1 41324 dih1rn 41325 dih1cnv 41326 dihmeetlem18N 41362 dih1dimatlem 41367 dihlspsnssN 41370 dihlspsnat 41371 dihatexv 41376 dihglb2 41380 dochcl 41391 doch0 41396 doch1 41397 dochvalr3 41401 doch2val2 41402 dochss 41403 dochocss 41404 dochoc 41405 dochnoncon 41429 djhlj 41439 dihjatc 41455 |
| Copyright terms: Public domain | W3C validator |