Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlol 37375 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
2 | olop 37228 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 OPcops 37186 OLcol 37188 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-ol 37192 df-oml 37193 df-hlat 37365 |
This theorem is referenced by: glbconN 37391 glbconxN 37392 hlhgt2 37403 hl0lt1N 37404 hl2at 37419 cvrexch 37434 atcvr0eq 37440 lnnat 37441 atle 37450 cvrat4 37457 athgt 37470 1cvrco 37486 1cvratex 37487 1cvrjat 37489 1cvrat 37490 ps-2 37492 llnn0 37530 lplnn0N 37561 llncvrlpln 37572 lvoln0N 37605 lplncvrlvol 37630 dalemkeop 37639 pmapeq0 37780 pmapglb2N 37785 pmapglb2xN 37786 2atm2atN 37799 polval2N 37920 polsubN 37921 pol1N 37924 2polpmapN 37927 2polvalN 37928 poldmj1N 37942 pmapj2N 37943 2polatN 37946 pnonsingN 37947 ispsubcl2N 37961 polsubclN 37966 poml4N 37967 pmapojoinN 37982 pl42lem1N 37993 lhp2lt 38015 lhp0lt 38017 lhpn0 38018 lhpexnle 38020 lhpoc2N 38029 lhpocnle 38030 lhpj1 38036 lhpmod2i2 38052 lhpmod6i1 38053 lhprelat3N 38054 ltrnatb 38151 trlcl 38178 trlle 38198 cdleme3c 38244 cdleme7e 38261 cdleme22b 38355 cdlemg12e 38661 cdlemg12g 38663 tendoid 38787 tendo0tp 38803 cdlemk39s-id 38954 tendoex 38989 dia0eldmN 39054 dia2dimlem2 39079 dia2dimlem3 39080 docaclN 39138 doca2N 39140 djajN 39151 dib0 39178 dih0 39294 dih0bN 39295 dih0rn 39298 dih1 39300 dih1rn 39301 dih1cnv 39302 dihmeetlem18N 39338 dih1dimatlem 39343 dihlspsnssN 39346 dihlspsnat 39347 dihatexv 39352 dihglb2 39356 dochcl 39367 doch0 39372 doch1 39373 dochvalr3 39377 doch2val2 39378 dochss 39379 dochocss 39380 dochoc 39381 dochnoncon 39405 djhlj 39415 dihjatc 39431 |
Copyright terms: Public domain | W3C validator |