![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlol 39342 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
2 | olop 39195 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 OPcops 39153 OLcol 39155 HLchlt 39331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-ol 39159 df-oml 39160 df-hlat 39332 |
This theorem is referenced by: glbconN 39358 glbconNOLD 39359 glbconxN 39360 hlhgt2 39371 hl0lt1N 39372 hl2at 39387 cvrexch 39402 atcvr0eq 39408 lnnat 39409 atle 39418 cvrat4 39425 athgt 39438 1cvrco 39454 1cvratex 39455 1cvrjat 39457 1cvrat 39458 ps-2 39460 llnn0 39498 lplnn0N 39529 llncvrlpln 39540 lvoln0N 39573 lplncvrlvol 39598 dalemkeop 39607 pmapeq0 39748 pmapglb2N 39753 pmapglb2xN 39754 2atm2atN 39767 polval2N 39888 polsubN 39889 pol1N 39892 2polpmapN 39895 2polvalN 39896 poldmj1N 39910 pmapj2N 39911 2polatN 39914 pnonsingN 39915 ispsubcl2N 39929 polsubclN 39934 poml4N 39935 pmapojoinN 39950 pl42lem1N 39961 lhp2lt 39983 lhp0lt 39985 lhpn0 39986 lhpexnle 39988 lhpoc2N 39997 lhpocnle 39998 lhpj1 40004 lhpmod2i2 40020 lhpmod6i1 40021 lhprelat3N 40022 ltrnatb 40119 trlcl 40146 trlle 40166 cdleme3c 40212 cdleme7e 40229 cdleme22b 40323 cdlemg12e 40629 cdlemg12g 40631 tendoid 40755 tendo0tp 40771 cdlemk39s-id 40922 tendoex 40957 dia0eldmN 41022 dia2dimlem2 41047 dia2dimlem3 41048 docaclN 41106 doca2N 41108 djajN 41119 dib0 41146 dih0 41262 dih0bN 41263 dih0rn 41266 dih1 41268 dih1rn 41269 dih1cnv 41270 dihmeetlem18N 41306 dih1dimatlem 41311 dihlspsnssN 41314 dihlspsnat 41315 dihatexv 41320 dihglb2 41324 dochcl 41335 doch0 41340 doch1 41341 dochvalr3 41345 doch2val2 41346 dochss 41347 dochocss 41348 dochoc 41349 dochnoncon 41373 djhlj 41383 dihjatc 41399 |
Copyright terms: Public domain | W3C validator |