Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlol 37595 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
2 | olop 37448 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 OPcops 37406 OLcol 37408 HLchlt 37584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6418 df-fv 6474 df-ov 7320 df-ol 37412 df-oml 37413 df-hlat 37585 |
This theorem is referenced by: glbconN 37611 glbconNOLD 37612 glbconxN 37613 hlhgt2 37624 hl0lt1N 37625 hl2at 37640 cvrexch 37655 atcvr0eq 37661 lnnat 37662 atle 37671 cvrat4 37678 athgt 37691 1cvrco 37707 1cvratex 37708 1cvrjat 37710 1cvrat 37711 ps-2 37713 llnn0 37751 lplnn0N 37782 llncvrlpln 37793 lvoln0N 37826 lplncvrlvol 37851 dalemkeop 37860 pmapeq0 38001 pmapglb2N 38006 pmapglb2xN 38007 2atm2atN 38020 polval2N 38141 polsubN 38142 pol1N 38145 2polpmapN 38148 2polvalN 38149 poldmj1N 38163 pmapj2N 38164 2polatN 38167 pnonsingN 38168 ispsubcl2N 38182 polsubclN 38187 poml4N 38188 pmapojoinN 38203 pl42lem1N 38214 lhp2lt 38236 lhp0lt 38238 lhpn0 38239 lhpexnle 38241 lhpoc2N 38250 lhpocnle 38251 lhpj1 38257 lhpmod2i2 38273 lhpmod6i1 38274 lhprelat3N 38275 ltrnatb 38372 trlcl 38399 trlle 38419 cdleme3c 38465 cdleme7e 38482 cdleme22b 38576 cdlemg12e 38882 cdlemg12g 38884 tendoid 39008 tendo0tp 39024 cdlemk39s-id 39175 tendoex 39210 dia0eldmN 39275 dia2dimlem2 39300 dia2dimlem3 39301 docaclN 39359 doca2N 39361 djajN 39372 dib0 39399 dih0 39515 dih0bN 39516 dih0rn 39519 dih1 39521 dih1rn 39522 dih1cnv 39523 dihmeetlem18N 39559 dih1dimatlem 39564 dihlspsnssN 39567 dihlspsnat 39568 dihatexv 39573 dihglb2 39577 dochcl 39588 doch0 39593 doch1 39594 dochvalr3 39598 doch2val2 39599 dochss 39600 dochocss 39601 dochoc 39602 dochnoncon 39626 djhlj 39636 dihjatc 39652 |
Copyright terms: Public domain | W3C validator |