| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlol 39354 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 2 | olop 39207 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OPcops 39165 OLcol 39167 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-ol 39171 df-oml 39172 df-hlat 39344 |
| This theorem is referenced by: glbconN 39370 glbconNOLD 39371 glbconxN 39372 hlhgt2 39383 hl0lt1N 39384 hl2at 39399 cvrexch 39414 atcvr0eq 39420 lnnat 39421 atle 39430 cvrat4 39437 athgt 39450 1cvrco 39466 1cvratex 39467 1cvrjat 39469 1cvrat 39470 ps-2 39472 llnn0 39510 lplnn0N 39541 llncvrlpln 39552 lvoln0N 39585 lplncvrlvol 39610 dalemkeop 39619 pmapeq0 39760 pmapglb2N 39765 pmapglb2xN 39766 2atm2atN 39779 polval2N 39900 polsubN 39901 pol1N 39904 2polpmapN 39907 2polvalN 39908 poldmj1N 39922 pmapj2N 39923 2polatN 39926 pnonsingN 39927 ispsubcl2N 39941 polsubclN 39946 poml4N 39947 pmapojoinN 39962 pl42lem1N 39973 lhp2lt 39995 lhp0lt 39997 lhpn0 39998 lhpexnle 40000 lhpoc2N 40009 lhpocnle 40010 lhpj1 40016 lhpmod2i2 40032 lhpmod6i1 40033 lhprelat3N 40034 ltrnatb 40131 trlcl 40158 trlle 40178 cdleme3c 40224 cdleme7e 40241 cdleme22b 40335 cdlemg12e 40641 cdlemg12g 40643 tendoid 40767 tendo0tp 40783 cdlemk39s-id 40934 tendoex 40969 dia0eldmN 41034 dia2dimlem2 41059 dia2dimlem3 41060 docaclN 41118 doca2N 41120 djajN 41131 dib0 41158 dih0 41274 dih0bN 41275 dih0rn 41278 dih1 41280 dih1rn 41281 dih1cnv 41282 dihmeetlem18N 41318 dih1dimatlem 41323 dihlspsnssN 41326 dihlspsnat 41327 dihatexv 41332 dihglb2 41336 dochcl 41347 doch0 41352 doch1 41353 dochvalr3 41357 doch2val2 41358 dochss 41359 dochocss 41360 dochoc 41361 dochnoncon 41385 djhlj 41395 dihjatc 41411 |
| Copyright terms: Public domain | W3C validator |