![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlop | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an orthoposet. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlop | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlol 39317 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
2 | olop 39170 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 OPcops 39128 OLcol 39130 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-ol 39134 df-oml 39135 df-hlat 39307 |
This theorem is referenced by: glbconN 39333 glbconNOLD 39334 glbconxN 39335 hlhgt2 39346 hl0lt1N 39347 hl2at 39362 cvrexch 39377 atcvr0eq 39383 lnnat 39384 atle 39393 cvrat4 39400 athgt 39413 1cvrco 39429 1cvratex 39430 1cvrjat 39432 1cvrat 39433 ps-2 39435 llnn0 39473 lplnn0N 39504 llncvrlpln 39515 lvoln0N 39548 lplncvrlvol 39573 dalemkeop 39582 pmapeq0 39723 pmapglb2N 39728 pmapglb2xN 39729 2atm2atN 39742 polval2N 39863 polsubN 39864 pol1N 39867 2polpmapN 39870 2polvalN 39871 poldmj1N 39885 pmapj2N 39886 2polatN 39889 pnonsingN 39890 ispsubcl2N 39904 polsubclN 39909 poml4N 39910 pmapojoinN 39925 pl42lem1N 39936 lhp2lt 39958 lhp0lt 39960 lhpn0 39961 lhpexnle 39963 lhpoc2N 39972 lhpocnle 39973 lhpj1 39979 lhpmod2i2 39995 lhpmod6i1 39996 lhprelat3N 39997 ltrnatb 40094 trlcl 40121 trlle 40141 cdleme3c 40187 cdleme7e 40204 cdleme22b 40298 cdlemg12e 40604 cdlemg12g 40606 tendoid 40730 tendo0tp 40746 cdlemk39s-id 40897 tendoex 40932 dia0eldmN 40997 dia2dimlem2 41022 dia2dimlem3 41023 docaclN 41081 doca2N 41083 djajN 41094 dib0 41121 dih0 41237 dih0bN 41238 dih0rn 41241 dih1 41243 dih1rn 41244 dih1cnv 41245 dihmeetlem18N 41281 dih1dimatlem 41286 dihlspsnssN 41289 dihlspsnat 41290 dihatexv 41295 dihglb2 41299 dochcl 41310 doch0 41315 doch1 41316 dochvalr3 41320 doch2val2 41321 dochss 41322 dochocss 41323 dochoc 41324 dochnoncon 41348 djhlj 41358 dihjatc 41374 |
Copyright terms: Public domain | W3C validator |