Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmm2 | Structured version Visualization version GIF version |
Description: De Morgan's law for meet in an ortholattice. (chdmm2 29461 analog.) (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
oldmm1.j | ⊢ ∨ = (join‘𝐾) |
oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oldmm2 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ ( ⊥ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olop 36851 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
2 | oldmm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | oldmm1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
4 | 2, 3 | opoccl 36831 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
5 | 1, 4 | sylan 583 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
6 | 5 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
7 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
8 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 2, 7, 8, 3 | oldmm1 36854 | . . 3 ⊢ ((𝐾 ∈ OL ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) = (( ⊥ ‘( ⊥ ‘𝑋)) ∨ ( ⊥ ‘𝑌))) |
10 | 6, 9 | syld3an2 1412 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) = (( ⊥ ‘( ⊥ ‘𝑋)) ∨ ( ⊥ ‘𝑌))) |
11 | 2, 3 | opococ 36832 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
12 | 1, 11 | sylan 583 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
13 | 12 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
14 | 13 | oveq1d 7185 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) ∨ ( ⊥ ‘𝑌)) = (𝑋 ∨ ( ⊥ ‘𝑌))) |
15 | 10, 14 | eqtrd 2773 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ ( ⊥ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 occoc 16676 joincjn 17670 meetcmee 17671 OPcops 36809 OLcol 36811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-proset 17654 df-poset 17672 df-lub 17700 df-glb 17701 df-join 17702 df-meet 17703 df-lat 17772 df-oposet 36813 df-ol 36815 |
This theorem is referenced by: oldmm4 36857 omllaw4 36883 omlfh3N 36896 doca2N 38763 djajN 38774 |
Copyright terms: Public domain | W3C validator |