Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm2 Structured version   Visualization version   GIF version

Theorem oldmm2 34995
Description: De Morgan's law for meet in an ortholattice. (chdmm2 28710 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (𝑋 ( 𝑌)))

Proof of Theorem oldmm2
StepHypRef Expression
1 olop 34991 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 oldmm1.b . . . . . 6 𝐵 = (Base‘𝐾)
3 oldmm1.o . . . . . 6 = (oc‘𝐾)
42, 3opoccl 34971 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
51, 4sylan 571 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
653adant3 1155 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
7 oldmm1.j . . . 4 = (join‘𝐾)
8 oldmm1.m . . . 4 = (meet‘𝐾)
92, 7, 8, 3oldmm1 34994 . . 3 ((𝐾 ∈ OL ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (( ‘( 𝑋)) ( 𝑌)))
106, 9syld3an2 1524 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (( ‘( 𝑋)) ( 𝑌)))
112, 3opococ 34972 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
121, 11sylan 571 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
13123adant3 1155 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
1413oveq1d 6886 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑋)) ( 𝑌)) = (𝑋 ( 𝑌)))
1510, 14eqtrd 2839 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (𝑋 ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1100   = wceq 1637  wcel 2158  cfv 6098  (class class class)co 6871  Basecbs 16064  occoc 16157  joincjn 17145  meetcmee 17146  OPcops 34949  OLcol 34951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-ral 3100  df-rex 3101  df-reu 3102  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4627  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-id 5216  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-riota 6832  df-ov 6874  df-oprab 6875  df-proset 17129  df-poset 17147  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-lat 17247  df-oposet 34953  df-ol 34955
This theorem is referenced by:  oldmm4  34997  omllaw4  35023  omlfh3N  35036  doca2N  36904  djajN  36915
  Copyright terms: Public domain W3C validator