Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmj2 Structured version   Visualization version   GIF version

Theorem oldmj2 36423
Description: De Morgan's law for join in an ortholattice. (chdmj2 29304 analog.) (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmj2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (𝑋 ( 𝑌)))

Proof of Theorem oldmj2
StepHypRef Expression
1 olop 36415 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 oldmm1.b . . . . . 6 𝐵 = (Base‘𝐾)
3 oldmm1.o . . . . . 6 = (oc‘𝐾)
42, 3opoccl 36395 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
51, 4sylan 583 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
653adant3 1129 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
7 oldmm1.j . . . 4 = (join‘𝐾)
8 oldmm1.m . . . 4 = (meet‘𝐾)
92, 7, 8, 3oldmj1 36422 . . 3 ((𝐾 ∈ OL ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (( ‘( 𝑋)) ( 𝑌)))
106, 9syld3an2 1408 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (( ‘( 𝑋)) ( 𝑌)))
112, 3opococ 36396 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
121, 11sylan 583 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
13123adant3 1129 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
1413oveq1d 7155 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑋)) ( 𝑌)) = (𝑋 ( 𝑌)))
1510, 14eqtrd 2859 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) = (𝑋 ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  cfv 6338  (class class class)co 7140  Basecbs 16474  occoc 16564  joincjn 17545  meetcmee 17546  OPcops 36373  OLcol 36375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-proset 17529  df-poset 17547  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-lat 17647  df-oposet 36377  df-ol 36379
This theorem is referenced by:  oldmj4  36425  latmassOLD  36430  cmtcomlemN  36449
  Copyright terms: Public domain W3C validator