![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj2 | Structured version Visualization version GIF version |
Description: De Morgan's law for join in an ortholattice. (chdmj2 31353 analog.) (Contributed by NM, 7-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | β’ π΅ = (BaseβπΎ) |
oldmm1.j | β’ β¨ = (joinβπΎ) |
oldmm1.m | β’ β§ = (meetβπΎ) |
oldmm1.o | β’ β₯ = (ocβπΎ) |
Ref | Expression |
---|---|
oldmj2 | β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β(( β₯ βπ) β¨ π)) = (π β§ ( β₯ βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olop 38686 | . . . . 5 β’ (πΎ β OL β πΎ β OP) | |
2 | oldmm1.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
3 | oldmm1.o | . . . . . 6 β’ β₯ = (ocβπΎ) | |
4 | 2, 3 | opoccl 38666 | . . . . 5 β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
5 | 1, 4 | sylan 579 | . . . 4 β’ ((πΎ β OL β§ π β π΅) β ( β₯ βπ) β π΅) |
6 | 5 | 3adant3 1130 | . . 3 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ βπ) β π΅) |
7 | oldmm1.j | . . . 4 β’ β¨ = (joinβπΎ) | |
8 | oldmm1.m | . . . 4 β’ β§ = (meetβπΎ) | |
9 | 2, 7, 8, 3 | oldmj1 38693 | . . 3 β’ ((πΎ β OL β§ ( β₯ βπ) β π΅ β§ π β π΅) β ( β₯ β(( β₯ βπ) β¨ π)) = (( β₯ β( β₯ βπ)) β§ ( β₯ βπ))) |
10 | 6, 9 | syld3an2 1409 | . 2 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β(( β₯ βπ) β¨ π)) = (( β₯ β( β₯ βπ)) β§ ( β₯ βπ))) |
11 | 2, 3 | opococ 38667 | . . . . 5 β’ ((πΎ β OP β§ π β π΅) β ( β₯ β( β₯ βπ)) = π) |
12 | 1, 11 | sylan 579 | . . . 4 β’ ((πΎ β OL β§ π β π΅) β ( β₯ β( β₯ βπ)) = π) |
13 | 12 | 3adant3 1130 | . . 3 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β( β₯ βπ)) = π) |
14 | 13 | oveq1d 7435 | . 2 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β (( β₯ β( β₯ βπ)) β§ ( β₯ βπ)) = (π β§ ( β₯ βπ))) |
15 | 10, 14 | eqtrd 2768 | 1 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β ( β₯ β(( β₯ βπ) β¨ π)) = (π β§ ( β₯ βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1534 β wcel 2099 βcfv 6548 (class class class)co 7420 Basecbs 17180 occoc 17241 joincjn 18303 meetcmee 18304 OPcops 38644 OLcol 38646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-proset 18287 df-poset 18305 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-lat 18424 df-oposet 38648 df-ol 38650 |
This theorem is referenced by: oldmj4 38696 latmassOLD 38701 cmtcomlemN 38720 |
Copyright terms: Public domain | W3C validator |