| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj2 | Structured version Visualization version GIF version | ||
| Description: De Morgan's law for join in an ortholattice. (chdmj2 31459 analog.) (Contributed by NM, 7-Nov-2011.) |
| Ref | Expression |
|---|---|
| oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
| oldmm1.j | ⊢ ∨ = (join‘𝐾) |
| oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
| oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| oldmj2 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ ( ⊥ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39207 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | oldmm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | oldmm1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | 2, 3 | opoccl 39187 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 5 | 1, 4 | sylan 580 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 7 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 8 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 9 | 2, 7, 8, 3 | oldmj1 39214 | . . 3 ⊢ ((𝐾 ∈ OL ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ 𝑌)) = (( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘𝑌))) |
| 10 | 6, 9 | syld3an2 1413 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ 𝑌)) = (( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘𝑌))) |
| 11 | 2, 3 | opococ 39188 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 12 | 1, 11 | sylan 580 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 13 | 12 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 14 | 13 | oveq1d 7402 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘𝑌)) = (𝑋 ∧ ( ⊥ ‘𝑌))) |
| 15 | 10, 14 | eqtrd 2764 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ ( ⊥ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 occoc 17228 joincjn 18272 meetcmee 18273 OPcops 39165 OLcol 39167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 df-oposet 39169 df-ol 39171 |
| This theorem is referenced by: oldmj4 39217 latmassOLD 39222 cmtcomlemN 39241 |
| Copyright terms: Public domain | W3C validator |