Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm3N Structured version   Visualization version   GIF version

Theorem oldmm3N 39258
Description: De Morgan's law for meet in an ortholattice. (chdmm3 31499 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm3N ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))

Proof of Theorem oldmm3N
StepHypRef Expression
1 olop 39253 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
213ad2ant1 1133 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
3 simp3 1138 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 oldmm1.b . . . . 5 𝐵 = (Base‘𝐾)
5 oldmm1.o . . . . 5 = (oc‘𝐾)
64, 5opoccl 39233 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
72, 3, 6syl2anc 584 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
8 oldmm1.j . . . 4 = (join‘𝐾)
9 oldmm1.m . . . 4 = (meet‘𝐾)
104, 8, 9, 5oldmm1 39256 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
117, 10syld3an3 1411 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
124, 5opococ 39234 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
132, 3, 12syl2anc 584 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1413oveq2d 7357 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( ‘( 𝑌))) = (( 𝑋) 𝑌))
1511, 14eqtrd 2766 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  occoc 17164  joincjn 18212  meetcmee 18213  OPcops 39211  OLcol 39213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-lat 18333  df-oposet 39215  df-ol 39217
This theorem is referenced by:  cmtbr3N  39293  lhprelat3N  40079
  Copyright terms: Public domain W3C validator