Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm3N Structured version   Visualization version   GIF version

Theorem oldmm3N 36856
Description: De Morgan's law for meet in an ortholattice. (chdmm3 29462 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm3N ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))

Proof of Theorem oldmm3N
StepHypRef Expression
1 olop 36851 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
213ad2ant1 1134 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
3 simp3 1139 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 oldmm1.b . . . . 5 𝐵 = (Base‘𝐾)
5 oldmm1.o . . . . 5 = (oc‘𝐾)
64, 5opoccl 36831 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
72, 3, 6syl2anc 587 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
8 oldmm1.j . . . 4 = (join‘𝐾)
9 oldmm1.m . . . 4 = (meet‘𝐾)
104, 8, 9, 5oldmm1 36854 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
117, 10syld3an3 1410 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
124, 5opococ 36832 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
132, 3, 12syl2anc 587 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1413oveq2d 7186 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( ‘( 𝑌))) = (( 𝑋) 𝑌))
1511, 14eqtrd 2773 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  cfv 6339  (class class class)co 7170  Basecbs 16586  occoc 16676  joincjn 17670  meetcmee 17671  OPcops 36809  OLcol 36811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-proset 17654  df-poset 17672  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-lat 17772  df-oposet 36813  df-ol 36815
This theorem is referenced by:  cmtbr3N  36891  lhprelat3N  37677
  Copyright terms: Public domain W3C validator