MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex2 Structured version   Visualization version   GIF version

Theorem brrelex2 5404
Description: A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)

Proof of Theorem brrelex2
StepHypRef Expression
1 brrelex12 5402 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 491 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2106  Vcvv 3397   class class class wbr 4886  Rel wrel 5360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4887  df-opab 4949  df-xp 5361  df-rel 5362
This theorem is referenced by:  brrelex2i  5407  releldm  5604  relelrn  5605  elrelimasn  5743  funbrfv  6493  relbrtpos  7645  ertr  8041  erth  8073  pslem  17592  opeldifid  29989  eqvreltr  34971  eqvrelth  34975  frege124d  39002  frege133d  39006  climfv  40823  funbrafv2  42280
  Copyright terms: Public domain W3C validator