![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex2 | Structured version Visualization version GIF version |
Description: If two classes are related by a binary relation, then the second class is a set. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelex2 | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex12 5752 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | 1 | simprd 495 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: brrelex2i 5757 releldm 5969 relelrn 5970 elrelimasn 6115 funbrfv 6971 relbrtpos 8278 ertr 8778 erth 8814 fsuppss 9452 pslem 18642 opeldifid 32621 eqvreltr 38563 eqvrelth 38567 frege124d 43723 frege133d 43727 climfv 45612 funbrafv2 47162 |
Copyright terms: Public domain | W3C validator |