MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex2 Structured version   Visualization version   GIF version

Theorem brrelex2 5677
Description: If two classes are related by a binary relation, then the second class is a set. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)

Proof of Theorem brrelex2
StepHypRef Expression
1 brrelex12 5675 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 497 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106  Vcvv 3442   class class class wbr 5097  Rel wrel 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-br 5098  df-opab 5160  df-xp 5631  df-rel 5632
This theorem is referenced by:  brrelex2i  5680  releldm  5890  relelrn  5891  elrelimasn  6028  funbrfv  6881  relbrtpos  8128  ertr  8589  erth  8623  pslem  18388  opeldifid  31223  eqvreltr  36923  eqvrelth  36927  frege124d  41740  frege133d  41744  climfv  43618  funbrafv2  45155
  Copyright terms: Public domain W3C validator