MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex2 Structured version   Visualization version   GIF version

Theorem brrelex2 5685
Description: If two classes are related by a binary relation, then the second class is a set. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)

Proof of Theorem brrelex2
StepHypRef Expression
1 brrelex12 5683 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 495 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3444   class class class wbr 5102  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638
This theorem is referenced by:  brrelex2i  5688  releldm  5897  relelrn  5898  elrelimasn  6046  funbrfv  6891  relbrtpos  8193  ertr  8663  erth  8702  fsuppss  9310  pslem  18513  opeldifid  32578  eqvreltr  38591  eqvrelth  38595  frege124d  43743  frege133d  43747  climfv  45682  funbrafv2  47241
  Copyright terms: Public domain W3C validator