![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustelimasn | Structured version Visualization version GIF version |
Description: Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustelimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
2 | ustdiag 24238 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → ( I ↾ 𝑋) ⊆ 𝑉) |
4 | opelidres 6021 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ 𝑋)) | |
5 | 4 | ibir 268 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
7 | 3, 6 | sseldd 4009 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ 𝑉) |
8 | elimasng 6118 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) | |
9 | 8 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) |
10 | 9 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 〈𝐴, 𝐴〉 ∈ 𝑉) → 𝐴 ∈ (𝑉 “ {𝐴})) |
11 | 1, 7, 10 | syl2anc 583 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 〈cop 4654 I cid 5592 ↾ cres 5702 “ cima 5703 ‘cfv 6573 UnifOncust 24229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ust 24230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |