![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustelimasn | Structured version Visualization version GIF version |
Description: Any point π΄ is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustelimasn | β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ β (π β {π΄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ β π) | |
2 | ustdiag 24131 | . . . 4 β’ ((π β (UnifOnβπ) β§ π β π) β ( I βΎ π) β π) | |
3 | 2 | 3adant3 1129 | . . 3 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β ( I βΎ π) β π) |
4 | opelidres 5991 | . . . . 5 β’ (π΄ β π β (β¨π΄, π΄β© β ( I βΎ π) β π΄ β π)) | |
5 | 4 | ibir 267 | . . . 4 β’ (π΄ β π β β¨π΄, π΄β© β ( I βΎ π)) |
6 | 5 | 3ad2ant3 1132 | . . 3 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β β¨π΄, π΄β© β ( I βΎ π)) |
7 | 3, 6 | sseldd 3973 | . 2 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β β¨π΄, π΄β© β π) |
8 | elimasng 6087 | . . . 4 β’ ((π΄ β π β§ π΄ β π) β (π΄ β (π β {π΄}) β β¨π΄, π΄β© β π)) | |
9 | 8 | anidms 565 | . . 3 β’ (π΄ β π β (π΄ β (π β {π΄}) β β¨π΄, π΄β© β π)) |
10 | 9 | biimpar 476 | . 2 β’ ((π΄ β π β§ β¨π΄, π΄β© β π) β π΄ β (π β {π΄})) |
11 | 1, 7, 10 | syl2anc 582 | 1 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ β (π β {π΄})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1084 β wcel 2098 β wss 3939 {csn 4624 β¨cop 4630 I cid 5569 βΎ cres 5674 β cima 5675 βcfv 6543 UnifOncust 24122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fv 6551 df-ust 24123 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |