MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustelimasn Structured version   Visualization version   GIF version

Theorem ustelimasn 24110
Description: Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
ustelimasn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴 ∈ (𝑉 “ {𝐴}))

Proof of Theorem ustelimasn
StepHypRef Expression
1 simp3 1138 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴𝑋)
2 ustdiag 24096 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
323adant3 1132 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → ( I ↾ 𝑋) ⊆ 𝑉)
4 opelidres 5962 . . . . 5 (𝐴𝑋 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝑋) ↔ 𝐴𝑋))
54ibir 268 . . . 4 (𝐴𝑋 → ⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝑋))
653ad2ant3 1135 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → ⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝑋))
73, 6sseldd 3947 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → ⟨𝐴, 𝐴⟩ ∈ 𝑉)
8 elimasng 6060 . . . 4 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ ⟨𝐴, 𝐴⟩ ∈ 𝑉))
98anidms 566 . . 3 (𝐴𝑋 → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ ⟨𝐴, 𝐴⟩ ∈ 𝑉))
109biimpar 477 . 2 ((𝐴𝑋 ∧ ⟨𝐴, 𝐴⟩ ∈ 𝑉) → 𝐴 ∈ (𝑉 “ {𝐴}))
111, 7, 10syl2anc 584 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴 ∈ (𝑉 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2109  wss 3914  {csn 4589  cop 4595   I cid 5532  cres 5640  cima 5641  cfv 6511  UnifOncust 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ust 24088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator