![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustelimasn | Structured version Visualization version GIF version |
Description: Any point π΄ is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustelimasn | β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ β (π β {π΄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ β π) | |
2 | ustdiag 24068 | . . . 4 β’ ((π β (UnifOnβπ) β§ π β π) β ( I βΎ π) β π) | |
3 | 2 | 3adant3 1129 | . . 3 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β ( I βΎ π) β π) |
4 | opelidres 5987 | . . . . 5 β’ (π΄ β π β (β¨π΄, π΄β© β ( I βΎ π) β π΄ β π)) | |
5 | 4 | ibir 268 | . . . 4 β’ (π΄ β π β β¨π΄, π΄β© β ( I βΎ π)) |
6 | 5 | 3ad2ant3 1132 | . . 3 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β β¨π΄, π΄β© β ( I βΎ π)) |
7 | 3, 6 | sseldd 3978 | . 2 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β β¨π΄, π΄β© β π) |
8 | elimasng 6081 | . . . 4 β’ ((π΄ β π β§ π΄ β π) β (π΄ β (π β {π΄}) β β¨π΄, π΄β© β π)) | |
9 | 8 | anidms 566 | . . 3 β’ (π΄ β π β (π΄ β (π β {π΄}) β β¨π΄, π΄β© β π)) |
10 | 9 | biimpar 477 | . 2 β’ ((π΄ β π β§ β¨π΄, π΄β© β π) β π΄ β (π β {π΄})) |
11 | 1, 7, 10 | syl2anc 583 | 1 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ β (π β {π΄})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1084 β wcel 2098 β wss 3943 {csn 4623 β¨cop 4629 I cid 5566 βΎ cres 5671 β cima 5672 βcfv 6537 UnifOncust 24059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fv 6545 df-ust 24060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |