Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustelimasn | Structured version Visualization version GIF version |
Description: Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustelimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
2 | ustdiag 23465 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → ( I ↾ 𝑋) ⊆ 𝑉) |
4 | opelidres 5939 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ 𝑋)) | |
5 | 4 | ibir 268 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
7 | 3, 6 | sseldd 3936 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ 𝑉) |
8 | elimasng 6030 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) | |
9 | 8 | anidms 568 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) |
10 | 9 | biimpar 479 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 〈𝐴, 𝐴〉 ∈ 𝑉) → 𝐴 ∈ (𝑉 “ {𝐴})) |
11 | 1, 7, 10 | syl2anc 585 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 ∈ wcel 2106 ⊆ wss 3901 {csn 4577 〈cop 4583 I cid 5521 ↾ cres 5626 “ cima 5627 ‘cfv 6483 UnifOncust 23456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fv 6491 df-ust 23457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |