Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustelimasn | Structured version Visualization version GIF version |
Description: Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustelimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
2 | ustdiag 23360 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
3 | 2 | 3adant3 1131 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → ( I ↾ 𝑋) ⊆ 𝑉) |
4 | opelidres 5903 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ 𝑋)) | |
5 | 4 | ibir 267 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
6 | 5 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
7 | 3, 6 | sseldd 3922 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ 𝑉) |
8 | elimasng 5996 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) | |
9 | 8 | anidms 567 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) |
10 | 9 | biimpar 478 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 〈𝐴, 𝐴〉 ∈ 𝑉) → 𝐴 ∈ (𝑉 “ {𝐴})) |
11 | 1, 7, 10 | syl2anc 584 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 〈cop 4567 I cid 5488 ↾ cres 5591 “ cima 5592 ‘cfv 6433 UnifOncust 23351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ust 23352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |