Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustelimasn | Structured version Visualization version GIF version |
Description: Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustelimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
2 | ustdiag 23268 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
3 | 2 | 3adant3 1130 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → ( I ↾ 𝑋) ⊆ 𝑉) |
4 | opelidres 5892 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ 𝑋)) | |
5 | 4 | ibir 267 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
6 | 5 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ ( I ↾ 𝑋)) |
7 | 3, 6 | sseldd 3918 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 〈𝐴, 𝐴〉 ∈ 𝑉) |
8 | elimasng 5985 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) | |
9 | 8 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ 〈𝐴, 𝐴〉 ∈ 𝑉)) |
10 | 9 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 〈𝐴, 𝐴〉 ∈ 𝑉) → 𝐴 ∈ (𝑉 “ {𝐴})) |
11 | 1, 7, 10 | syl2anc 583 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 〈cop 4564 I cid 5479 ↾ cres 5582 “ cima 5583 ‘cfv 6418 UnifOncust 23259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ust 23260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |