MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustelimasn Structured version   Visualization version   GIF version

Theorem ustelimasn 23282
Description: Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
ustelimasn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴 ∈ (𝑉 “ {𝐴}))

Proof of Theorem ustelimasn
StepHypRef Expression
1 simp3 1136 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴𝑋)
2 ustdiag 23268 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
323adant3 1130 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → ( I ↾ 𝑋) ⊆ 𝑉)
4 opelidres 5892 . . . . 5 (𝐴𝑋 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝑋) ↔ 𝐴𝑋))
54ibir 267 . . . 4 (𝐴𝑋 → ⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝑋))
653ad2ant3 1133 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → ⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝑋))
73, 6sseldd 3918 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → ⟨𝐴, 𝐴⟩ ∈ 𝑉)
8 elimasng 5985 . . . 4 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ ⟨𝐴, 𝐴⟩ ∈ 𝑉))
98anidms 566 . . 3 (𝐴𝑋 → (𝐴 ∈ (𝑉 “ {𝐴}) ↔ ⟨𝐴, 𝐴⟩ ∈ 𝑉))
109biimpar 477 . 2 ((𝐴𝑋 ∧ ⟨𝐴, 𝐴⟩ ∈ 𝑉) → 𝐴 ∈ (𝑉 “ {𝐴}))
111, 7, 10syl2anc 583 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴 ∈ (𝑉 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085  wcel 2108  wss 3883  {csn 4558  cop 4564   I cid 5479  cres 5582  cima 5583  cfv 6418  UnifOncust 23259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ust 23260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator