![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelopabsbALT | Structured version Visualization version GIF version |
Description: The law of concretion in terms of substitutions. Less general than opelopabsb 5179, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opelopabsbALT | ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 2205 | . . 3 ⊢ (∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
2 | vex 3386 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
3 | vex 3386 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
4 | 2, 3 | opth 5133 | . . . . . 6 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |
5 | equcom 2117 | . . . . . . 7 ⊢ (𝑧 = 𝑥 ↔ 𝑥 = 𝑧) | |
6 | equcom 2117 | . . . . . . 7 ⊢ (𝑤 = 𝑦 ↔ 𝑦 = 𝑤) | |
7 | 5, 6 | anbi12ci 622 | . . . . . 6 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ↔ (𝑦 = 𝑤 ∧ 𝑥 = 𝑧)) |
8 | 4, 7 | bitri 267 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ (𝑦 = 𝑤 ∧ 𝑥 = 𝑧)) |
9 | 8 | anbi1i 618 | . . . 4 ⊢ ((〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ 𝜑)) |
10 | 9 | 2exbii 1945 | . . 3 ⊢ (∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ 𝜑)) |
11 | 1, 10 | bitri 267 | . 2 ⊢ (∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ 𝜑)) |
12 | elopab 5177 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
13 | 2sb5 2301 | . 2 ⊢ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∃𝑦∃𝑥((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ 𝜑)) | |
14 | 11, 12, 13 | 3bitr4i 295 | 1 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 [wsb 2064 ∈ wcel 2157 〈cop 4372 {copab 4903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-opab 4904 |
This theorem is referenced by: inopab 5454 cnvopab 5749 brabsb2 34874 |
Copyright terms: Public domain | W3C validator |