MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabsbALT Structured version   Visualization version   GIF version

Theorem opelopabsbALT 5381
Description: The law of concretion in terms of substitutions. Less general than opelopabsb 5382, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opelopabsbALT (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem opelopabsbALT
StepHypRef Expression
1 excom 2166 . . 3 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 vex 3444 . . . . . . 7 𝑧 ∈ V
3 vex 3444 . . . . . . 7 𝑤 ∈ V
42, 3opth 5333 . . . . . 6 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = 𝑥𝑤 = 𝑦))
5 equcom 2025 . . . . . . 7 (𝑧 = 𝑥𝑥 = 𝑧)
6 equcom 2025 . . . . . . 7 (𝑤 = 𝑦𝑦 = 𝑤)
75, 6anbi12ci 630 . . . . . 6 ((𝑧 = 𝑥𝑤 = 𝑦) ↔ (𝑦 = 𝑤𝑥 = 𝑧))
84, 7bitri 278 . . . . 5 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = 𝑤𝑥 = 𝑧))
98anbi1i 626 . . . 4 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1092exbii 1850 . . 3 (∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
111, 10bitri 278 . 2 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
12 elopab 5379 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
13 2sb5 2278 . 2 ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1411, 12, 133bitr4i 306 1 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  [wsb 2069  wcel 2111  cop 4531  {copab 5092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5093
This theorem is referenced by:  inopab  5665  cnvopab  5964  brabsb2  36158
  Copyright terms: Public domain W3C validator