| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelrn | Structured version Visualization version GIF version | ||
| Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
| Ref | Expression |
|---|---|
| brelrn.1 | ⊢ 𝐴 ∈ V |
| brelrn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelrn | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5103 | . 2 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
| 2 | brelrn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | brelrn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brelrn 5895 | . 2 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| 5 | 1, 4 | sylbir 235 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 〈cop 4591 class class class wbr 5102 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: dfres3 5944 relssdmrn 6229 zfrep6 7913 2ndrn 7999 disjen 9075 r0weon 9941 gsum2dlem1 19884 gsum2dlem2 19885 iss2 38319 rfovcnvf1od 43986 |
| Copyright terms: Public domain | W3C validator |