MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelrn Structured version   Visualization version   GIF version

Theorem opelrn 5909
Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
Hypotheses
Ref Expression
brelrn.1 𝐴 ∈ V
brelrn.2 𝐵 ∈ V
Assertion
Ref Expression
opelrn (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 ∈ ran 𝐶)

Proof of Theorem opelrn
StepHypRef Expression
1 df-br 5110 . 2 (𝐴𝐶𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)
2 brelrn.1 . . 3 𝐴 ∈ V
3 brelrn.2 . . 3 𝐵 ∈ V
42, 3brelrn 5908 . 2 (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
51, 4sylbir 235 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 ∈ ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  cop 4597   class class class wbr 5109  ran crn 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-cnv 5648  df-dm 5650  df-rn 5651
This theorem is referenced by:  dfres3  5957  relssdmrn  6243  zfrep6  7935  2ndrn  8022  disjen  9103  r0weon  9971  gsum2dlem1  19906  gsum2dlem2  19907  iss2  38321  rfovcnvf1od  43986
  Copyright terms: Public domain W3C validator