| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelrn | Structured version Visualization version GIF version | ||
| Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
| Ref | Expression |
|---|---|
| brelrn.1 | ⊢ 𝐴 ∈ V |
| brelrn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelrn | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5096 | . 2 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
| 2 | brelrn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | brelrn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brelrn 5889 | . 2 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| 5 | 1, 4 | sylbir 235 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3438 〈cop 4583 class class class wbr 5095 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: dfres3 5940 relssdmrn 6224 zfrep6 7896 2ndrn 7982 disjen 9057 r0weon 9913 gsum2dlem1 19892 gsum2dlem2 19893 iss2 38386 rfovcnvf1od 44111 |
| Copyright terms: Public domain | W3C validator |