Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelrn | Structured version Visualization version GIF version |
Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
Ref | Expression |
---|---|
brelrn.1 | ⊢ 𝐴 ∈ V |
brelrn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelrn | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . 2 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
2 | brelrn.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | brelrn.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | brelrn 5840 | . 2 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
5 | 1, 4 | sylbir 234 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: dfres3 5885 zfrep6 7771 2ndrn 7855 disjen 8870 r0weon 9699 gsum2dlem1 19486 gsum2dlem2 19487 iss2 36406 rfovcnvf1od 41501 |
Copyright terms: Public domain | W3C validator |