| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelrn | Structured version Visualization version GIF version | ||
| Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
| Ref | Expression |
|---|---|
| brelrn.1 | ⊢ 𝐴 ∈ V |
| brelrn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelrn | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5110 | . 2 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
| 2 | brelrn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | brelrn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brelrn 5908 | . 2 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| 5 | 1, 4 | sylbir 235 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 〈cop 4597 class class class wbr 5109 ran crn 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-cnv 5648 df-dm 5650 df-rn 5651 |
| This theorem is referenced by: dfres3 5957 relssdmrn 6243 zfrep6 7935 2ndrn 8022 disjen 9103 r0weon 9971 gsum2dlem1 19906 gsum2dlem2 19907 iss2 38321 rfovcnvf1od 43986 |
| Copyright terms: Public domain | W3C validator |