![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndrn | Structured version Visualization version GIF version |
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 8021 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | simpr 485 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
3 | 1, 2 | eqeltrrd 2834 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝑅) |
4 | fvex 6901 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
5 | fvex 6901 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
6 | 4, 5 | opelrn 5940 | . 2 ⊢ (⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝑅 → (2nd ‘𝐴) ∈ ran 𝑅) |
7 | 3, 6 | syl 17 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⟨cop 4633 ran crn 5676 Rel wrel 5680 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: gsumhashmul 32195 heicant 36511 mblfinlem1 36513 |
Copyright terms: Public domain | W3C validator |