MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndrn Structured version   Visualization version   GIF version

Theorem 2ndrn 8066
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
2ndrn ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)

Proof of Theorem 2ndrn
StepHypRef Expression
1 1st2nd 8064 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 simpr 484 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
31, 2eqeltrrd 2842 . 2 ((Rel 𝑅𝐴𝑅) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅)
4 fvex 6919 . . 3 (1st𝐴) ∈ V
5 fvex 6919 . . 3 (2nd𝐴) ∈ V
64, 5opelrn 5954 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅 → (2nd𝐴) ∈ ran 𝑅)
73, 6syl 17 1 ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cop 4632  ran crn 5686  Rel wrel 5690  cfv 6561  1st c1st 8012  2nd c2nd 8013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-1st 8014  df-2nd 8015
This theorem is referenced by:  gsumhashmul  33064  heicant  37662  mblfinlem1  37664
  Copyright terms: Public domain W3C validator