| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndrn | Structured version Visualization version GIF version | ||
| Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| 2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd 8038 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | simpr 484 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
| 3 | 1, 2 | eqeltrrd 2835 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) |
| 4 | fvex 6889 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
| 5 | fvex 6889 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
| 6 | 4, 5 | opelrn 5923 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅 → (2nd ‘𝐴) ∈ ran 𝑅) |
| 7 | 3, 6 | syl 17 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 〈cop 4607 ran crn 5655 Rel wrel 5659 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: gsumhashmul 33055 heicant 37679 mblfinlem1 37681 |
| Copyright terms: Public domain | W3C validator |