Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndrn | Structured version Visualization version GIF version |
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 7742 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | simpr 488 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
3 | 1, 2 | eqeltrrd 2853 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) |
4 | fvex 6671 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
5 | fvex 6671 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
6 | 4, 5 | opelrn 5784 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅 → (2nd ‘𝐴) ∈ ran 𝑅) |
7 | 3, 6 | syl 17 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 〈cop 4528 ran crn 5525 Rel wrel 5529 ‘cfv 6335 1st c1st 7691 2nd c2nd 7692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fv 6343 df-1st 7693 df-2nd 7694 |
This theorem is referenced by: gsumhashmul 30842 heicant 35394 mblfinlem1 35396 |
Copyright terms: Public domain | W3C validator |