MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndrn Structured version   Visualization version   GIF version

Theorem 2ndrn 8021
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
2ndrn ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)

Proof of Theorem 2ndrn
StepHypRef Expression
1 1st2nd 8019 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 simpr 484 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
31, 2eqeltrrd 2826 . 2 ((Rel 𝑅𝐴𝑅) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅)
4 fvex 6895 . . 3 (1st𝐴) ∈ V
5 fvex 6895 . . 3 (2nd𝐴) ∈ V
64, 5opelrn 5933 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅 → (2nd𝐴) ∈ ran 𝑅)
73, 6syl 17 1 ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  cop 4627  ran crn 5668  Rel wrel 5672  cfv 6534  1st c1st 7967  2nd c2nd 7968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fv 6542  df-1st 7969  df-2nd 7970
This theorem is referenced by:  gsumhashmul  32702  heicant  37027  mblfinlem1  37029
  Copyright terms: Public domain W3C validator