| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsum2dlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for gsum2d 19909. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsum2d.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsum2d.z | ⊢ 0 = (0g‘𝐺) |
| gsum2d.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsum2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsum2d.r | ⊢ (𝜑 → Rel 𝐴) |
| gsum2d.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| gsum2d.s | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) |
| gsum2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsum2d.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsum2dlem1 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsum2d.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsum2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsum2d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | imaexg 7892 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ {𝑗}) ∈ V) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 “ {𝑗}) ∈ V) |
| 7 | vex 3454 | . . . . 5 ⊢ 𝑗 ∈ V | |
| 8 | vex 3454 | . . . . 5 ⊢ 𝑘 ∈ V | |
| 9 | 7, 8 | elimasn 6064 | . . . 4 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↔ 〈𝑗, 𝑘〉 ∈ 𝐴) |
| 10 | df-ov 7393 | . . . . 5 ⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | |
| 11 | gsum2d.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | 11 | ffvelcdmda 7059 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝐹‘〈𝑗, 𝑘〉) ∈ 𝐵) |
| 13 | 10, 12 | eqeltrid 2833 | . . . 4 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 14 | 9, 13 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 15 | 14 | fmpttd 7090 | . 2 ⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵) |
| 16 | gsum2d.w | . . . . 5 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 17 | 16 | fsuppimpd 9327 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
| 18 | rnfi 9298 | . . . 4 ⊢ ((𝐹 supp 0 ) ∈ Fin → ran (𝐹 supp 0 ) ∈ Fin) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝐹 supp 0 ) ∈ Fin) |
| 20 | 9 | biimpi 216 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) → 〈𝑗, 𝑘〉 ∈ 𝐴) |
| 21 | 7, 8 | opelrn 5910 | . . . . . . . 8 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 )) |
| 22 | 21 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝑘 ∈ ran (𝐹 supp 0 ) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
| 23 | 20, 22 | anim12i 613 | . . . . . 6 ⊢ ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) |
| 24 | eldif 3927 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 ))) | |
| 25 | eldif 3927 | . . . . . 6 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) | |
| 26 | 23, 24, 25 | 3imtr4i 292 | . . . . 5 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) |
| 27 | ssidd 3973 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
| 28 | 2 | fvexi 6875 | . . . . . . . 8 ⊢ 0 ∈ V |
| 29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
| 30 | 11, 27, 4, 29 | suppssr 8177 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
| 31 | 10, 30 | eqtrid 2777 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
| 32 | 26, 31 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
| 33 | 32, 6 | suppss2 8182 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) |
| 34 | 19, 33 | ssfid 9219 | . 2 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin) |
| 35 | 1, 2, 3, 6, 15, 34 | gsumcl2 19851 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 〈cop 4598 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 “ cima 5644 Rel wrel 5646 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 Basecbs 17186 0gc0g 17409 Σg cgsu 17410 CMndccmn 19717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-cntz 19256 df-cmn 19719 |
| This theorem is referenced by: gsum2dlem2 19908 gsum2d 19909 |
| Copyright terms: Public domain | W3C validator |