Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsum2dlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for gsum2d 19573. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
Ref | Expression |
---|---|
gsum2d.b | ⊢ 𝐵 = (Base‘𝐺) |
gsum2d.z | ⊢ 0 = (0g‘𝐺) |
gsum2d.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsum2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsum2d.r | ⊢ (𝜑 → Rel 𝐴) |
gsum2d.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
gsum2d.s | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) |
gsum2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsum2d.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsum2dlem1 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsum2d.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsum2d.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsum2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsum2d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | imaexg 7762 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ {𝑗}) ∈ V) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 “ {𝑗}) ∈ V) |
7 | vex 3436 | . . . . 5 ⊢ 𝑗 ∈ V | |
8 | vex 3436 | . . . . 5 ⊢ 𝑘 ∈ V | |
9 | 7, 8 | elimasn 5997 | . . . 4 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↔ 〈𝑗, 𝑘〉 ∈ 𝐴) |
10 | df-ov 7278 | . . . . 5 ⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | |
11 | gsum2d.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | 11 | ffvelrnda 6961 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝐹‘〈𝑗, 𝑘〉) ∈ 𝐵) |
13 | 10, 12 | eqeltrid 2843 | . . . 4 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵) |
14 | 9, 13 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵) |
15 | 14 | fmpttd 6989 | . 2 ⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵) |
16 | gsum2d.w | . . . . 5 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
17 | 16 | fsuppimpd 9135 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
18 | rnfi 9102 | . . . 4 ⊢ ((𝐹 supp 0 ) ∈ Fin → ran (𝐹 supp 0 ) ∈ Fin) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝐹 supp 0 ) ∈ Fin) |
20 | 9 | biimpi 215 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) → 〈𝑗, 𝑘〉 ∈ 𝐴) |
21 | 7, 8 | opelrn 5852 | . . . . . . . 8 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 )) |
22 | 21 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝑘 ∈ ran (𝐹 supp 0 ) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
23 | 20, 22 | anim12i 613 | . . . . . 6 ⊢ ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) |
24 | eldif 3897 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 ))) | |
25 | eldif 3897 | . . . . . 6 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) | |
26 | 23, 24, 25 | 3imtr4i 292 | . . . . 5 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) |
27 | ssidd 3944 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
28 | 2 | fvexi 6788 | . . . . . . . 8 ⊢ 0 ∈ V |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
30 | 11, 27, 4, 29 | suppssr 8012 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
31 | 10, 30 | eqtrid 2790 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
32 | 26, 31 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
33 | 32, 6 | suppss2 8016 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) |
34 | 19, 33 | ssfid 9042 | . 2 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin) |
35 | 1, 2, 3, 6, 15, 34 | gsumcl2 19515 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 〈cop 4567 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 “ cima 5592 Rel wrel 5594 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 Basecbs 16912 0gc0g 17150 Σg cgsu 17151 CMndccmn 19386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-cntz 18923 df-cmn 19388 |
This theorem is referenced by: gsum2dlem2 19572 gsum2d 19573 |
Copyright terms: Public domain | W3C validator |