![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsum2dlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for gsum2d 19757. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
Ref | Expression |
---|---|
gsum2d.b | ⊢ 𝐵 = (Base‘𝐺) |
gsum2d.z | ⊢ 0 = (0g‘𝐺) |
gsum2d.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsum2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsum2d.r | ⊢ (𝜑 → Rel 𝐴) |
gsum2d.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
gsum2d.s | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) |
gsum2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsum2d.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsum2dlem1 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsum2d.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsum2d.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsum2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsum2d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | imaexg 7856 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ {𝑗}) ∈ V) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 “ {𝑗}) ∈ V) |
7 | vex 3451 | . . . . 5 ⊢ 𝑗 ∈ V | |
8 | vex 3451 | . . . . 5 ⊢ 𝑘 ∈ V | |
9 | 7, 8 | elimasn 6045 | . . . 4 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴) |
10 | df-ov 7364 | . . . . 5 ⊢ (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩) | |
11 | gsum2d.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | 11 | ffvelcdmda 7039 | . . . . 5 ⊢ ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ 𝐴) → (𝐹‘⟨𝑗, 𝑘⟩) ∈ 𝐵) |
13 | 10, 12 | eqeltrid 2838 | . . . 4 ⊢ ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵) |
14 | 9, 13 | sylan2b 595 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵) |
15 | 14 | fmpttd 7067 | . 2 ⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵) |
16 | gsum2d.w | . . . . 5 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
17 | 16 | fsuppimpd 9319 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
18 | rnfi 9285 | . . . 4 ⊢ ((𝐹 supp 0 ) ∈ Fin → ran (𝐹 supp 0 ) ∈ Fin) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝐹 supp 0 ) ∈ Fin) |
20 | 9 | biimpi 215 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴) |
21 | 7, 8 | opelrn 5902 | . . . . . . . 8 ⊢ (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 )) |
22 | 21 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝑘 ∈ ran (𝐹 supp 0 ) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) |
23 | 20, 22 | anim12i 614 | . . . . . 6 ⊢ ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (⟨𝑗, 𝑘⟩ ∈ 𝐴 ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))) |
24 | eldif 3924 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 ))) | |
25 | eldif 3924 | . . . . . 6 ⊢ (⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (⟨𝑗, 𝑘⟩ ∈ 𝐴 ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))) | |
26 | 23, 24, 25 | 3imtr4i 292 | . . . . 5 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) |
27 | ssidd 3971 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
28 | 2 | fvexi 6860 | . . . . . . . 8 ⊢ 0 ∈ V |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
30 | 11, 27, 4, 29 | suppssr 8131 | . . . . . 6 ⊢ ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ) |
31 | 10, 30 | eqtrid 2785 | . . . . 5 ⊢ ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
32 | 26, 31 | sylan2 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
33 | 32, 6 | suppss2 8135 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) |
34 | 19, 33 | ssfid 9217 | . 2 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin) |
35 | 1, 2, 3, 6, 15, 34 | gsumcl2 19699 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 {csn 4590 ⟨cop 4596 class class class wbr 5109 ↦ cmpt 5192 dom cdm 5637 ran crn 5638 “ cima 5640 Rel wrel 5642 ⟶wf 6496 ‘cfv 6500 (class class class)co 7361 supp csupp 8096 Fincfn 8889 finSupp cfsupp 9311 Basecbs 17091 0gc0g 17329 Σg cgsu 17330 CMndccmn 19570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-oi 9454 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-fzo 13577 df-seq 13916 df-hash 14240 df-0g 17331 df-gsum 17332 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-cntz 19105 df-cmn 19572 |
This theorem is referenced by: gsum2dlem2 19756 gsum2d 19757 |
Copyright terms: Public domain | W3C validator |