MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0weon Structured version   Visualization version   GIF version

Theorem r0weon 9972
Description: A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
r0weon.1 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
Assertion
Ref Expression
r0weon (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
Distinct variable groups:   𝑧,𝑤,𝐿   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧,𝑤)   𝐿(𝑥,𝑦)

Proof of Theorem r0weon
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 r0weon.1 . . . . 5 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
2 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1st𝑥) = (1st𝑧))
3 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2nd𝑥) = (2nd𝑧))
42, 3uneq12d 4135 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((1st𝑥) ∪ (2nd𝑥)) = ((1st𝑧) ∪ (2nd𝑧)))
5 eqid 2730 . . . . . . . . . . 11 (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) = (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
6 fvex 6874 . . . . . . . . . . . 12 (1st𝑧) ∈ V
7 fvex 6874 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
86, 7unex 7723 . . . . . . . . . . 11 ((1st𝑧) ∪ (2nd𝑧)) ∈ V
94, 5, 8fvmpt 6971 . . . . . . . . . 10 (𝑧 ∈ (On × On) → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((1st𝑧) ∪ (2nd𝑧)))
10 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1st𝑥) = (1st𝑤))
11 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (2nd𝑥) = (2nd𝑤))
1210, 11uneq12d 4135 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((1st𝑥) ∪ (2nd𝑥)) = ((1st𝑤) ∪ (2nd𝑤)))
13 fvex 6874 . . . . . . . . . . . 12 (1st𝑤) ∈ V
14 fvex 6874 . . . . . . . . . . . 12 (2nd𝑤) ∈ V
1513, 14unex 7723 . . . . . . . . . . 11 ((1st𝑤) ∪ (2nd𝑤)) ∈ V
1612, 5, 15fvmpt 6971 . . . . . . . . . 10 (𝑤 ∈ (On × On) → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) = ((1st𝑤) ∪ (2nd𝑤)))
179, 16breqan12d 5126 . . . . . . . . 9 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) E ((1st𝑤) ∪ (2nd𝑤))))
1815epeli 5543 . . . . . . . . 9 (((1st𝑧) ∪ (2nd𝑧)) E ((1st𝑤) ∪ (2nd𝑤)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)))
1917, 18bitrdi 287 . . . . . . . 8 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
209, 16eqeqan12d 2744 . . . . . . . . 9 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
2120anbi1d 631 . . . . . . . 8 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → ((((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))
2219, 21orbi12d 918 . . . . . . 7 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → ((((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
2322pm5.32i 574 . . . . . 6 (((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
2423opabbii 5177 . . . . 5 {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
251, 24eqtr4i 2756 . . . 4 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)))}
26 xp1st 8003 . . . . . . . 8 (𝑥 ∈ (On × On) → (1st𝑥) ∈ On)
27 xp2nd 8004 . . . . . . . 8 (𝑥 ∈ (On × On) → (2nd𝑥) ∈ On)
28 fvex 6874 . . . . . . . . . 10 (1st𝑥) ∈ V
2928elon 6344 . . . . . . . . 9 ((1st𝑥) ∈ On ↔ Ord (1st𝑥))
30 fvex 6874 . . . . . . . . . 10 (2nd𝑥) ∈ V
3130elon 6344 . . . . . . . . 9 ((2nd𝑥) ∈ On ↔ Ord (2nd𝑥))
32 ordun 6441 . . . . . . . . 9 ((Ord (1st𝑥) ∧ Ord (2nd𝑥)) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3329, 31, 32syl2anb 598 . . . . . . . 8 (((1st𝑥) ∈ On ∧ (2nd𝑥) ∈ On) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3426, 27, 33syl2anc 584 . . . . . . 7 (𝑥 ∈ (On × On) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3528, 30unex 7723 . . . . . . . 8 ((1st𝑥) ∪ (2nd𝑥)) ∈ V
3635elon 6344 . . . . . . 7 (((1st𝑥) ∪ (2nd𝑥)) ∈ On ↔ Ord ((1st𝑥) ∪ (2nd𝑥)))
3734, 36sylibr 234 . . . . . 6 (𝑥 ∈ (On × On) → ((1st𝑥) ∪ (2nd𝑥)) ∈ On)
385, 37fmpti 7087 . . . . 5 (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))):(On × On)⟶On
3938a1i 11 . . . 4 (⊤ → (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))):(On × On)⟶On)
40 epweon 7754 . . . . 5 E We On
4140a1i 11 . . . 4 (⊤ → E We On)
42 leweon.1 . . . . . 6 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
4342leweon 9971 . . . . 5 𝐿 We (On × On)
4443a1i 11 . . . 4 (⊤ → 𝐿 We (On × On))
45 vex 3454 . . . . . . . 8 𝑢 ∈ V
4645dmex 7888 . . . . . . 7 dom 𝑢 ∈ V
4745rnex 7889 . . . . . . 7 ran 𝑢 ∈ V
4846, 47unex 7723 . . . . . 6 (dom 𝑢 ∪ ran 𝑢) ∈ V
49 imadmres 6210 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢)
50 inss2 4204 . . . . . . . . . 10 (𝑢 ∩ (On × On)) ⊆ (On × On)
51 ssun1 4144 . . . . . . . . . . . . . 14 dom 𝑢 ⊆ (dom 𝑢 ∪ ran 𝑢)
52 elinel2 4168 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥 ∈ (On × On))
53 1st2nd2 8010 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (On × On) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
55 elinel1 4167 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥𝑢)
5654, 55eqeltrrd 2830 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑢 ∩ (On × On)) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢)
5728, 30opeldm 5874 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢 → (1st𝑥) ∈ dom 𝑢)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ dom 𝑢)
5951, 58sselid 3947 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ (dom 𝑢 ∪ ran 𝑢))
60 ssun2 4145 . . . . . . . . . . . . . 14 ran 𝑢 ⊆ (dom 𝑢 ∪ ran 𝑢)
6128, 30opelrn 5910 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢 → (2nd𝑥) ∈ ran 𝑢)
6256, 61syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ ran 𝑢)
6360, 62sselid 3947 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ (dom 𝑢 ∪ ran 𝑢))
6459, 63prssd 4789 . . . . . . . . . . . 12 (𝑥 ∈ (𝑢 ∩ (On × On)) → {(1st𝑥), (2nd𝑥)} ⊆ (dom 𝑢 ∪ ran 𝑢))
6552, 26syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ On)
6652, 27syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ On)
67 ordunpr 7804 . . . . . . . . . . . . 13 (((1st𝑥) ∈ On ∧ (2nd𝑥) ∈ On) → ((1st𝑥) ∪ (2nd𝑥)) ∈ {(1st𝑥), (2nd𝑥)})
6865, 66, 67syl2anc 584 . . . . . . . . . . . 12 (𝑥 ∈ (𝑢 ∩ (On × On)) → ((1st𝑥) ∪ (2nd𝑥)) ∈ {(1st𝑥), (2nd𝑥)})
6964, 68sseldd 3950 . . . . . . . . . . 11 (𝑥 ∈ (𝑢 ∩ (On × On)) → ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢))
7069rgen 3047 . . . . . . . . . 10 𝑥 ∈ (𝑢 ∩ (On × On))((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)
71 ssrab 4039 . . . . . . . . . 10 ((𝑢 ∩ (On × On)) ⊆ {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)} ↔ ((𝑢 ∩ (On × On)) ⊆ (On × On) ∧ ∀𝑥 ∈ (𝑢 ∩ (On × On))((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)))
7250, 70, 71mpbir2an 711 . . . . . . . . 9 (𝑢 ∩ (On × On)) ⊆ {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)}
73 dmres 5986 . . . . . . . . . 10 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) = (𝑢 ∩ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))))
7438fdmi 6702 . . . . . . . . . . 11 dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) = (On × On)
7574ineq2i 4183 . . . . . . . . . 10 (𝑢 ∩ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))) = (𝑢 ∩ (On × On))
7673, 75eqtri 2753 . . . . . . . . 9 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) = (𝑢 ∩ (On × On))
775mptpreima 6214 . . . . . . . . 9 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢)) = {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)}
7872, 76, 773sstr4i 4001 . . . . . . . 8 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢))
79 funmpt 6557 . . . . . . . . 9 Fun (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
80 resss 5975 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
81 dmss 5869 . . . . . . . . . 10 (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) → dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))))
8280, 81ax-mp 5 . . . . . . . . 9 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
83 funimass3 7029 . . . . . . . . 9 ((Fun (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ∧ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢) ↔ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢))))
8479, 82, 83mp2an 692 . . . . . . . 8 (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢) ↔ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢)))
8578, 84mpbir 231 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢)
8649, 85eqsstrri 3997 . . . . . 6 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ⊆ (dom 𝑢 ∪ ran 𝑢)
8748, 86ssexi 5280 . . . . 5 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V
8887a1i 11 . . . 4 (⊤ → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V)
8925, 39, 41, 44, 88fnwe 8114 . . 3 (⊤ → 𝑅 We (On × On))
90 epse 5623 . . . . 5 E Se On
9190a1i 11 . . . 4 (⊤ → E Se On)
92 vuniex 7718 . . . . . . . 8 𝑢 ∈ V
9392pwex 5338 . . . . . . 7 𝒫 𝑢 ∈ V
9493, 93xpex 7732 . . . . . 6 (𝒫 𝑢 × 𝒫 𝑢) ∈ V
955mptpreima 6214 . . . . . . . 8 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) = {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢}
96 df-rab 3409 . . . . . . . 8 {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢} = {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)}
9795, 96eqtri 2753 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) = {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)}
9853adantr 480 . . . . . . . . 9 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
99 elssuni 4904 . . . . . . . . . . . . 13 (((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢 → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑢)
10099adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑢)
101100unssad 4159 . . . . . . . . . . 11 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (1st𝑥) ⊆ 𝑢)
10228elpw 4570 . . . . . . . . . . 11 ((1st𝑥) ∈ 𝒫 𝑢 ↔ (1st𝑥) ⊆ 𝑢)
103101, 102sylibr 234 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (1st𝑥) ∈ 𝒫 𝑢)
104100unssbd 4160 . . . . . . . . . . 11 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (2nd𝑥) ⊆ 𝑢)
10530elpw 4570 . . . . . . . . . . 11 ((2nd𝑥) ∈ 𝒫 𝑢 ↔ (2nd𝑥) ⊆ 𝑢)
106104, 105sylibr 234 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (2nd𝑥) ∈ 𝒫 𝑢)
107103, 106jca 511 . . . . . . . . 9 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → ((1st𝑥) ∈ 𝒫 𝑢 ∧ (2nd𝑥) ∈ 𝒫 𝑢))
108 elxp6 8005 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑢 × 𝒫 𝑢) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ 𝒫 𝑢 ∧ (2nd𝑥) ∈ 𝒫 𝑢)))
10998, 107, 108sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → 𝑥 ∈ (𝒫 𝑢 × 𝒫 𝑢))
110109abssi 4036 . . . . . . 7 {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)} ⊆ (𝒫 𝑢 × 𝒫 𝑢)
11197, 110eqsstri 3996 . . . . . 6 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ⊆ (𝒫 𝑢 × 𝒫 𝑢)
11294, 111ssexi 5280 . . . . 5 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V
113112a1i 11 . . . 4 (⊤ → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V)
11425, 39, 91, 113fnse 8115 . . 3 (⊤ → 𝑅 Se (On × On))
11589, 114jca 511 . 2 (⊤ → (𝑅 We (On × On) ∧ 𝑅 Se (On × On)))
116115mptru 1547 1 (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  {cab 2708  wral 3045  {crab 3408  Vcvv 3450  cun 3915  cin 3916  wss 3917  𝒫 cpw 4566  {cpr 4594  cop 4598   cuni 4874   class class class wbr 5110  {copab 5172  cmpt 5191   E cep 5540   Se wse 5592   We wwe 5593   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Ord word 6334  Oncon0 6335  Fun wfun 6508  wf 6510  cfv 6514  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-1st 7971  df-2nd 7972
This theorem is referenced by:  infxpenlem  9973
  Copyright terms: Public domain W3C validator