MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0weon Structured version   Visualization version   GIF version

Theorem r0weon 10026
Description: A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
r0weon.1 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
Assertion
Ref Expression
r0weon (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
Distinct variable groups:   𝑧,𝑤,𝐿   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧,𝑤)   𝐿(𝑥,𝑦)

Proof of Theorem r0weon
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 r0weon.1 . . . . 5 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
2 fveq2 6876 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1st𝑥) = (1st𝑧))
3 fveq2 6876 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2nd𝑥) = (2nd𝑧))
42, 3uneq12d 4144 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((1st𝑥) ∪ (2nd𝑥)) = ((1st𝑧) ∪ (2nd𝑧)))
5 eqid 2735 . . . . . . . . . . 11 (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) = (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
6 fvex 6889 . . . . . . . . . . . 12 (1st𝑧) ∈ V
7 fvex 6889 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
86, 7unex 7738 . . . . . . . . . . 11 ((1st𝑧) ∪ (2nd𝑧)) ∈ V
94, 5, 8fvmpt 6986 . . . . . . . . . 10 (𝑧 ∈ (On × On) → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((1st𝑧) ∪ (2nd𝑧)))
10 fveq2 6876 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1st𝑥) = (1st𝑤))
11 fveq2 6876 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (2nd𝑥) = (2nd𝑤))
1210, 11uneq12d 4144 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((1st𝑥) ∪ (2nd𝑥)) = ((1st𝑤) ∪ (2nd𝑤)))
13 fvex 6889 . . . . . . . . . . . 12 (1st𝑤) ∈ V
14 fvex 6889 . . . . . . . . . . . 12 (2nd𝑤) ∈ V
1513, 14unex 7738 . . . . . . . . . . 11 ((1st𝑤) ∪ (2nd𝑤)) ∈ V
1612, 5, 15fvmpt 6986 . . . . . . . . . 10 (𝑤 ∈ (On × On) → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) = ((1st𝑤) ∪ (2nd𝑤)))
179, 16breqan12d 5135 . . . . . . . . 9 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) E ((1st𝑤) ∪ (2nd𝑤))))
1815epeli 5555 . . . . . . . . 9 (((1st𝑧) ∪ (2nd𝑧)) E ((1st𝑤) ∪ (2nd𝑤)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)))
1917, 18bitrdi 287 . . . . . . . 8 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
209, 16eqeqan12d 2749 . . . . . . . . 9 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
2120anbi1d 631 . . . . . . . 8 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → ((((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))
2219, 21orbi12d 918 . . . . . . 7 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → ((((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
2322pm5.32i 574 . . . . . 6 (((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
2423opabbii 5186 . . . . 5 {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
251, 24eqtr4i 2761 . . . 4 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)))}
26 xp1st 8020 . . . . . . . 8 (𝑥 ∈ (On × On) → (1st𝑥) ∈ On)
27 xp2nd 8021 . . . . . . . 8 (𝑥 ∈ (On × On) → (2nd𝑥) ∈ On)
28 fvex 6889 . . . . . . . . . 10 (1st𝑥) ∈ V
2928elon 6361 . . . . . . . . 9 ((1st𝑥) ∈ On ↔ Ord (1st𝑥))
30 fvex 6889 . . . . . . . . . 10 (2nd𝑥) ∈ V
3130elon 6361 . . . . . . . . 9 ((2nd𝑥) ∈ On ↔ Ord (2nd𝑥))
32 ordun 6458 . . . . . . . . 9 ((Ord (1st𝑥) ∧ Ord (2nd𝑥)) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3329, 31, 32syl2anb 598 . . . . . . . 8 (((1st𝑥) ∈ On ∧ (2nd𝑥) ∈ On) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3426, 27, 33syl2anc 584 . . . . . . 7 (𝑥 ∈ (On × On) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3528, 30unex 7738 . . . . . . . 8 ((1st𝑥) ∪ (2nd𝑥)) ∈ V
3635elon 6361 . . . . . . 7 (((1st𝑥) ∪ (2nd𝑥)) ∈ On ↔ Ord ((1st𝑥) ∪ (2nd𝑥)))
3734, 36sylibr 234 . . . . . 6 (𝑥 ∈ (On × On) → ((1st𝑥) ∪ (2nd𝑥)) ∈ On)
385, 37fmpti 7102 . . . . 5 (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))):(On × On)⟶On
3938a1i 11 . . . 4 (⊤ → (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))):(On × On)⟶On)
40 epweon 7769 . . . . 5 E We On
4140a1i 11 . . . 4 (⊤ → E We On)
42 leweon.1 . . . . . 6 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
4342leweon 10025 . . . . 5 𝐿 We (On × On)
4443a1i 11 . . . 4 (⊤ → 𝐿 We (On × On))
45 vex 3463 . . . . . . . 8 𝑢 ∈ V
4645dmex 7905 . . . . . . 7 dom 𝑢 ∈ V
4745rnex 7906 . . . . . . 7 ran 𝑢 ∈ V
4846, 47unex 7738 . . . . . 6 (dom 𝑢 ∪ ran 𝑢) ∈ V
49 imadmres 6223 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢)
50 inss2 4213 . . . . . . . . . 10 (𝑢 ∩ (On × On)) ⊆ (On × On)
51 ssun1 4153 . . . . . . . . . . . . . 14 dom 𝑢 ⊆ (dom 𝑢 ∪ ran 𝑢)
52 elinel2 4177 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥 ∈ (On × On))
53 1st2nd2 8027 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (On × On) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
55 elinel1 4176 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥𝑢)
5654, 55eqeltrrd 2835 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑢 ∩ (On × On)) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢)
5728, 30opeldm 5887 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢 → (1st𝑥) ∈ dom 𝑢)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ dom 𝑢)
5951, 58sselid 3956 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ (dom 𝑢 ∪ ran 𝑢))
60 ssun2 4154 . . . . . . . . . . . . . 14 ran 𝑢 ⊆ (dom 𝑢 ∪ ran 𝑢)
6128, 30opelrn 5923 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢 → (2nd𝑥) ∈ ran 𝑢)
6256, 61syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ ran 𝑢)
6360, 62sselid 3956 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ (dom 𝑢 ∪ ran 𝑢))
6459, 63prssd 4798 . . . . . . . . . . . 12 (𝑥 ∈ (𝑢 ∩ (On × On)) → {(1st𝑥), (2nd𝑥)} ⊆ (dom 𝑢 ∪ ran 𝑢))
6552, 26syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ On)
6652, 27syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ On)
67 ordunpr 7820 . . . . . . . . . . . . 13 (((1st𝑥) ∈ On ∧ (2nd𝑥) ∈ On) → ((1st𝑥) ∪ (2nd𝑥)) ∈ {(1st𝑥), (2nd𝑥)})
6865, 66, 67syl2anc 584 . . . . . . . . . . . 12 (𝑥 ∈ (𝑢 ∩ (On × On)) → ((1st𝑥) ∪ (2nd𝑥)) ∈ {(1st𝑥), (2nd𝑥)})
6964, 68sseldd 3959 . . . . . . . . . . 11 (𝑥 ∈ (𝑢 ∩ (On × On)) → ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢))
7069rgen 3053 . . . . . . . . . 10 𝑥 ∈ (𝑢 ∩ (On × On))((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)
71 ssrab 4048 . . . . . . . . . 10 ((𝑢 ∩ (On × On)) ⊆ {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)} ↔ ((𝑢 ∩ (On × On)) ⊆ (On × On) ∧ ∀𝑥 ∈ (𝑢 ∩ (On × On))((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)))
7250, 70, 71mpbir2an 711 . . . . . . . . 9 (𝑢 ∩ (On × On)) ⊆ {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)}
73 dmres 5999 . . . . . . . . . 10 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) = (𝑢 ∩ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))))
7438fdmi 6717 . . . . . . . . . . 11 dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) = (On × On)
7574ineq2i 4192 . . . . . . . . . 10 (𝑢 ∩ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))) = (𝑢 ∩ (On × On))
7673, 75eqtri 2758 . . . . . . . . 9 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) = (𝑢 ∩ (On × On))
775mptpreima 6227 . . . . . . . . 9 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢)) = {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)}
7872, 76, 773sstr4i 4010 . . . . . . . 8 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢))
79 funmpt 6574 . . . . . . . . 9 Fun (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
80 resss 5988 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
81 dmss 5882 . . . . . . . . . 10 (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) → dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))))
8280, 81ax-mp 5 . . . . . . . . 9 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
83 funimass3 7044 . . . . . . . . 9 ((Fun (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ∧ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢) ↔ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢))))
8479, 82, 83mp2an 692 . . . . . . . 8 (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢) ↔ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢)))
8578, 84mpbir 231 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢)
8649, 85eqsstrri 4006 . . . . . 6 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ⊆ (dom 𝑢 ∪ ran 𝑢)
8748, 86ssexi 5292 . . . . 5 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V
8887a1i 11 . . . 4 (⊤ → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V)
8925, 39, 41, 44, 88fnwe 8131 . . 3 (⊤ → 𝑅 We (On × On))
90 epse 5636 . . . . 5 E Se On
9190a1i 11 . . . 4 (⊤ → E Se On)
92 vuniex 7733 . . . . . . . 8 𝑢 ∈ V
9392pwex 5350 . . . . . . 7 𝒫 𝑢 ∈ V
9493, 93xpex 7747 . . . . . 6 (𝒫 𝑢 × 𝒫 𝑢) ∈ V
955mptpreima 6227 . . . . . . . 8 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) = {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢}
96 df-rab 3416 . . . . . . . 8 {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢} = {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)}
9795, 96eqtri 2758 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) = {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)}
9853adantr 480 . . . . . . . . 9 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
99 elssuni 4913 . . . . . . . . . . . . 13 (((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢 → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑢)
10099adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑢)
101100unssad 4168 . . . . . . . . . . 11 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (1st𝑥) ⊆ 𝑢)
10228elpw 4579 . . . . . . . . . . 11 ((1st𝑥) ∈ 𝒫 𝑢 ↔ (1st𝑥) ⊆ 𝑢)
103101, 102sylibr 234 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (1st𝑥) ∈ 𝒫 𝑢)
104100unssbd 4169 . . . . . . . . . . 11 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (2nd𝑥) ⊆ 𝑢)
10530elpw 4579 . . . . . . . . . . 11 ((2nd𝑥) ∈ 𝒫 𝑢 ↔ (2nd𝑥) ⊆ 𝑢)
106104, 105sylibr 234 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (2nd𝑥) ∈ 𝒫 𝑢)
107103, 106jca 511 . . . . . . . . 9 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → ((1st𝑥) ∈ 𝒫 𝑢 ∧ (2nd𝑥) ∈ 𝒫 𝑢))
108 elxp6 8022 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑢 × 𝒫 𝑢) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ 𝒫 𝑢 ∧ (2nd𝑥) ∈ 𝒫 𝑢)))
10998, 107, 108sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → 𝑥 ∈ (𝒫 𝑢 × 𝒫 𝑢))
110109abssi 4045 . . . . . . 7 {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)} ⊆ (𝒫 𝑢 × 𝒫 𝑢)
11197, 110eqsstri 4005 . . . . . 6 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ⊆ (𝒫 𝑢 × 𝒫 𝑢)
11294, 111ssexi 5292 . . . . 5 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V
113112a1i 11 . . . 4 (⊤ → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V)
11425, 39, 91, 113fnse 8132 . . 3 (⊤ → 𝑅 Se (On × On))
11589, 114jca 511 . 2 (⊤ → (𝑅 We (On × On) ∧ 𝑅 Se (On × On)))
116115mptru 1547 1 (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2108  {cab 2713  wral 3051  {crab 3415  Vcvv 3459  cun 3924  cin 3925  wss 3926  𝒫 cpw 4575  {cpr 4603  cop 4607   cuni 4883   class class class wbr 5119  {copab 5181  cmpt 5201   E cep 5552   Se wse 5604   We wwe 5605   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Ord word 6351  Oncon0 6352  Fun wfun 6525  wf 6527  cfv 6531  1st c1st 7986  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-1st 7988  df-2nd 7989
This theorem is referenced by:  infxpenlem  10027
  Copyright terms: Public domain W3C validator