MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0weon Structured version   Visualization version   GIF version

Theorem r0weon 10050
Description: A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
r0weon.1 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
Assertion
Ref Expression
r0weon (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
Distinct variable groups:   𝑧,𝑤,𝐿   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧,𝑤)   𝐿(𝑥,𝑦)

Proof of Theorem r0weon
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 r0weon.1 . . . . 5 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
2 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1st𝑥) = (1st𝑧))
3 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2nd𝑥) = (2nd𝑧))
42, 3uneq12d 4179 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((1st𝑥) ∪ (2nd𝑥)) = ((1st𝑧) ∪ (2nd𝑧)))
5 eqid 2735 . . . . . . . . . . 11 (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) = (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
6 fvex 6920 . . . . . . . . . . . 12 (1st𝑧) ∈ V
7 fvex 6920 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
86, 7unex 7763 . . . . . . . . . . 11 ((1st𝑧) ∪ (2nd𝑧)) ∈ V
94, 5, 8fvmpt 7016 . . . . . . . . . 10 (𝑧 ∈ (On × On) → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((1st𝑧) ∪ (2nd𝑧)))
10 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1st𝑥) = (1st𝑤))
11 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (2nd𝑥) = (2nd𝑤))
1210, 11uneq12d 4179 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((1st𝑥) ∪ (2nd𝑥)) = ((1st𝑤) ∪ (2nd𝑤)))
13 fvex 6920 . . . . . . . . . . . 12 (1st𝑤) ∈ V
14 fvex 6920 . . . . . . . . . . . 12 (2nd𝑤) ∈ V
1513, 14unex 7763 . . . . . . . . . . 11 ((1st𝑤) ∪ (2nd𝑤)) ∈ V
1612, 5, 15fvmpt 7016 . . . . . . . . . 10 (𝑤 ∈ (On × On) → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) = ((1st𝑤) ∪ (2nd𝑤)))
179, 16breqan12d 5164 . . . . . . . . 9 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) E ((1st𝑤) ∪ (2nd𝑤))))
1815epeli 5591 . . . . . . . . 9 (((1st𝑧) ∪ (2nd𝑧)) E ((1st𝑤) ∪ (2nd𝑤)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)))
1917, 18bitrdi 287 . . . . . . . 8 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
209, 16eqeqan12d 2749 . . . . . . . . 9 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
2120anbi1d 631 . . . . . . . 8 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → ((((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))
2219, 21orbi12d 918 . . . . . . 7 ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) → ((((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
2322pm5.32i 574 . . . . . 6 (((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
2423opabbii 5215 . . . . 5 {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
251, 24eqtr4i 2766 . . . 4 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) E ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∨ (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑧) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))‘𝑤) ∧ 𝑧𝐿𝑤)))}
26 xp1st 8045 . . . . . . . 8 (𝑥 ∈ (On × On) → (1st𝑥) ∈ On)
27 xp2nd 8046 . . . . . . . 8 (𝑥 ∈ (On × On) → (2nd𝑥) ∈ On)
28 fvex 6920 . . . . . . . . . 10 (1st𝑥) ∈ V
2928elon 6395 . . . . . . . . 9 ((1st𝑥) ∈ On ↔ Ord (1st𝑥))
30 fvex 6920 . . . . . . . . . 10 (2nd𝑥) ∈ V
3130elon 6395 . . . . . . . . 9 ((2nd𝑥) ∈ On ↔ Ord (2nd𝑥))
32 ordun 6490 . . . . . . . . 9 ((Ord (1st𝑥) ∧ Ord (2nd𝑥)) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3329, 31, 32syl2anb 598 . . . . . . . 8 (((1st𝑥) ∈ On ∧ (2nd𝑥) ∈ On) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3426, 27, 33syl2anc 584 . . . . . . 7 (𝑥 ∈ (On × On) → Ord ((1st𝑥) ∪ (2nd𝑥)))
3528, 30unex 7763 . . . . . . . 8 ((1st𝑥) ∪ (2nd𝑥)) ∈ V
3635elon 6395 . . . . . . 7 (((1st𝑥) ∪ (2nd𝑥)) ∈ On ↔ Ord ((1st𝑥) ∪ (2nd𝑥)))
3734, 36sylibr 234 . . . . . 6 (𝑥 ∈ (On × On) → ((1st𝑥) ∪ (2nd𝑥)) ∈ On)
385, 37fmpti 7132 . . . . 5 (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))):(On × On)⟶On
3938a1i 11 . . . 4 (⊤ → (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))):(On × On)⟶On)
40 epweon 7794 . . . . 5 E We On
4140a1i 11 . . . 4 (⊤ → E We On)
42 leweon.1 . . . . . 6 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
4342leweon 10049 . . . . 5 𝐿 We (On × On)
4443a1i 11 . . . 4 (⊤ → 𝐿 We (On × On))
45 vex 3482 . . . . . . . 8 𝑢 ∈ V
4645dmex 7932 . . . . . . 7 dom 𝑢 ∈ V
4745rnex 7933 . . . . . . 7 ran 𝑢 ∈ V
4846, 47unex 7763 . . . . . 6 (dom 𝑢 ∪ ran 𝑢) ∈ V
49 imadmres 6256 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) = ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢)
50 inss2 4246 . . . . . . . . . 10 (𝑢 ∩ (On × On)) ⊆ (On × On)
51 ssun1 4188 . . . . . . . . . . . . . 14 dom 𝑢 ⊆ (dom 𝑢 ∪ ran 𝑢)
52 elinel2 4212 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥 ∈ (On × On))
53 1st2nd2 8052 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (On × On) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
55 elinel1 4211 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∩ (On × On)) → 𝑥𝑢)
5654, 55eqeltrrd 2840 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑢 ∩ (On × On)) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢)
5728, 30opeldm 5921 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢 → (1st𝑥) ∈ dom 𝑢)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ dom 𝑢)
5951, 58sselid 3993 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ (dom 𝑢 ∪ ran 𝑢))
60 ssun2 4189 . . . . . . . . . . . . . 14 ran 𝑢 ⊆ (dom 𝑢 ∪ ran 𝑢)
6128, 30opelrn 5957 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑢 → (2nd𝑥) ∈ ran 𝑢)
6256, 61syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ ran 𝑢)
6360, 62sselid 3993 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ (dom 𝑢 ∪ ran 𝑢))
6459, 63prssd 4827 . . . . . . . . . . . 12 (𝑥 ∈ (𝑢 ∩ (On × On)) → {(1st𝑥), (2nd𝑥)} ⊆ (dom 𝑢 ∪ ran 𝑢))
6552, 26syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (1st𝑥) ∈ On)
6652, 27syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (On × On)) → (2nd𝑥) ∈ On)
67 ordunpr 7846 . . . . . . . . . . . . 13 (((1st𝑥) ∈ On ∧ (2nd𝑥) ∈ On) → ((1st𝑥) ∪ (2nd𝑥)) ∈ {(1st𝑥), (2nd𝑥)})
6865, 66, 67syl2anc 584 . . . . . . . . . . . 12 (𝑥 ∈ (𝑢 ∩ (On × On)) → ((1st𝑥) ∪ (2nd𝑥)) ∈ {(1st𝑥), (2nd𝑥)})
6964, 68sseldd 3996 . . . . . . . . . . 11 (𝑥 ∈ (𝑢 ∩ (On × On)) → ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢))
7069rgen 3061 . . . . . . . . . 10 𝑥 ∈ (𝑢 ∩ (On × On))((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)
71 ssrab 4083 . . . . . . . . . 10 ((𝑢 ∩ (On × On)) ⊆ {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)} ↔ ((𝑢 ∩ (On × On)) ⊆ (On × On) ∧ ∀𝑥 ∈ (𝑢 ∩ (On × On))((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)))
7250, 70, 71mpbir2an 711 . . . . . . . . 9 (𝑢 ∩ (On × On)) ⊆ {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)}
73 dmres 6032 . . . . . . . . . 10 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) = (𝑢 ∩ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))))
7438fdmi 6748 . . . . . . . . . . 11 dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) = (On × On)
7574ineq2i 4225 . . . . . . . . . 10 (𝑢 ∩ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))) = (𝑢 ∩ (On × On))
7673, 75eqtri 2763 . . . . . . . . 9 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) = (𝑢 ∩ (On × On))
775mptpreima 6260 . . . . . . . . 9 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢)) = {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ (dom 𝑢 ∪ ran 𝑢)}
7872, 76, 773sstr4i 4039 . . . . . . . 8 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢))
79 funmpt 6606 . . . . . . . . 9 Fun (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
80 resss 6022 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
81 dmss 5916 . . . . . . . . . 10 (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) → dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))))
8280, 81ax-mp 5 . . . . . . . . 9 dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))
83 funimass3 7074 . . . . . . . . 9 ((Fun (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ∧ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ dom (𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥)))) → (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢) ↔ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢))))
8479, 82, 83mp2an 692 . . . . . . . 8 (((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢) ↔ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢) ⊆ ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ (dom 𝑢 ∪ ran 𝑢)))
8578, 84mpbir 231 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ dom ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) ↾ 𝑢)) ⊆ (dom 𝑢 ∪ ran 𝑢)
8649, 85eqsstrri 4031 . . . . . 6 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ⊆ (dom 𝑢 ∪ ran 𝑢)
8748, 86ssexi 5328 . . . . 5 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V
8887a1i 11 . . . 4 (⊤ → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V)
8925, 39, 41, 44, 88fnwe 8156 . . 3 (⊤ → 𝑅 We (On × On))
90 epse 5671 . . . . 5 E Se On
9190a1i 11 . . . 4 (⊤ → E Se On)
92 vuniex 7758 . . . . . . . 8 𝑢 ∈ V
9392pwex 5386 . . . . . . 7 𝒫 𝑢 ∈ V
9493, 93xpex 7772 . . . . . 6 (𝒫 𝑢 × 𝒫 𝑢) ∈ V
955mptpreima 6260 . . . . . . . 8 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) = {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢}
96 df-rab 3434 . . . . . . . 8 {𝑥 ∈ (On × On) ∣ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢} = {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)}
9795, 96eqtri 2763 . . . . . . 7 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) = {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)}
9853adantr 480 . . . . . . . . 9 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
99 elssuni 4942 . . . . . . . . . . . . 13 (((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢 → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑢)
10099adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑢)
101100unssad 4203 . . . . . . . . . . 11 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (1st𝑥) ⊆ 𝑢)
10228elpw 4609 . . . . . . . . . . 11 ((1st𝑥) ∈ 𝒫 𝑢 ↔ (1st𝑥) ⊆ 𝑢)
103101, 102sylibr 234 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (1st𝑥) ∈ 𝒫 𝑢)
104100unssbd 4204 . . . . . . . . . . 11 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (2nd𝑥) ⊆ 𝑢)
10530elpw 4609 . . . . . . . . . . 11 ((2nd𝑥) ∈ 𝒫 𝑢 ↔ (2nd𝑥) ⊆ 𝑢)
106104, 105sylibr 234 . . . . . . . . . 10 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → (2nd𝑥) ∈ 𝒫 𝑢)
107103, 106jca 511 . . . . . . . . 9 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → ((1st𝑥) ∈ 𝒫 𝑢 ∧ (2nd𝑥) ∈ 𝒫 𝑢))
108 elxp6 8047 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑢 × 𝒫 𝑢) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ 𝒫 𝑢 ∧ (2nd𝑥) ∈ 𝒫 𝑢)))
10998, 107, 108sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢) → 𝑥 ∈ (𝒫 𝑢 × 𝒫 𝑢))
110109abssi 4080 . . . . . . 7 {𝑥 ∣ (𝑥 ∈ (On × On) ∧ ((1st𝑥) ∪ (2nd𝑥)) ∈ 𝑢)} ⊆ (𝒫 𝑢 × 𝒫 𝑢)
11197, 110eqsstri 4030 . . . . . 6 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ⊆ (𝒫 𝑢 × 𝒫 𝑢)
11294, 111ssexi 5328 . . . . 5 ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V
113112a1i 11 . . . 4 (⊤ → ((𝑥 ∈ (On × On) ↦ ((1st𝑥) ∪ (2nd𝑥))) “ 𝑢) ∈ V)
11425, 39, 91, 113fnse 8157 . . 3 (⊤ → 𝑅 Se (On × On))
11589, 114jca 511 . 2 (⊤ → (𝑅 We (On × On) ∧ 𝑅 Se (On × On)))
116115mptru 1544 1 (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1537  wtru 1538  wcel 2106  {cab 2712  wral 3059  {crab 3433  Vcvv 3478  cun 3961  cin 3962  wss 3963  𝒫 cpw 4605  {cpr 4633  cop 4637   cuni 4912   class class class wbr 5148  {copab 5210  cmpt 5231   E cep 5588   Se wse 5639   We wwe 5640   × cxp 5687  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  Ord word 6385  Oncon0 6386  Fun wfun 6557  wf 6559  cfv 6563  1st c1st 8011  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-1st 8013  df-2nd 8014
This theorem is referenced by:  infxpenlem  10051
  Copyright terms: Public domain W3C validator