![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq1i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq1i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq1 4878 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 〈cop 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 |
This theorem is referenced by: axi2m1 11197 s3tpop 14945 2strstr1OLD 17271 2strop1 17273 grpbasex 17337 grpplusgx 17338 mat1dimelbas 22493 mat1dim0 22495 mat1dimid 22496 mat1dimscm 22497 mat1dimmul 22498 indistpsx 23033 nosupcbv 27762 noinfcbv 27777 setsiedg 29068 cusgrsize 29487 mapfzcons 42704 |
Copyright terms: Public domain | W3C validator |