| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq1i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq1 4825 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 〈cop 4582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 |
| This theorem is referenced by: axi2m1 11050 s3tpop 14816 2strop 17140 grpbasex 17196 grpplusgx 17197 mat1dimelbas 22387 mat1dim0 22389 mat1dimid 22390 mat1dimscm 22391 mat1dimmul 22392 indistpsx 22926 nosupcbv 27642 noinfcbv 27657 setsiedg 29015 cusgrsize 29434 mapfzcons 42755 |
| Copyright terms: Public domain | W3C validator |