| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq1i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq1 4827 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 |
| This theorem is referenced by: axi2m1 11072 s3tpop 14834 2strop 17158 grpbasex 17214 grpplusgx 17215 mat1dimelbas 22374 mat1dim0 22376 mat1dimid 22377 mat1dimscm 22378 mat1dimmul 22379 indistpsx 22913 nosupcbv 27630 noinfcbv 27645 setsiedg 28999 cusgrsize 29418 mapfzcons 42692 |
| Copyright terms: Public domain | W3C validator |