MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq1i Structured version   Visualization version   GIF version

Theorem opeq1i 4807
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
opeq1i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐶

Proof of Theorem opeq1i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq1 4804 . 2 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
31, 2ax-mp 5 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  axi2m1  10915  s3tpop  14622  2strstr1OLD  16938  2strop1  16940  grpbasex  17001  grpplusgx  17002  mat1dimelbas  21620  mat1dim0  21622  mat1dimid  21623  mat1dimscm  21624  mat1dimmul  21625  indistpsx  22160  setsiedg  27406  cusgrsize  27821  nosupcbv  33905  noinfcbv  33920  mapfzcons  40538
  Copyright terms: Public domain W3C validator