MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq1i Structured version   Visualization version   GIF version

Theorem opeq1i 4875
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
opeq1i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐶

Proof of Theorem opeq1i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq1 4872 . 2 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
31, 2ax-mp 5 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cop 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634
This theorem is referenced by:  axi2m1  11156  s3tpop  14864  2strstr1OLD  17174  2strop1  17176  grpbasex  17240  grpplusgx  17241  mat1dimelbas  22193  mat1dim0  22195  mat1dimid  22196  mat1dimscm  22197  mat1dimmul  22198  indistpsx  22733  nosupcbv  27441  noinfcbv  27456  setsiedg  28563  cusgrsize  28978  mapfzcons  41756
  Copyright terms: Public domain W3C validator