MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimmul Structured version   Visualization version   GIF version

Theorem mat1dimmul 22503
Description: The ring multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) (Proof shortened by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimmul (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimmul
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 9109 . . . . 5 {𝐸} ∈ Fin
2 simpl 482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 eqid 2740 . . . . . . 7 (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩)
53, 4matmulr 22465 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩) = (.r𝐴))
65eqcomd 2746 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
71, 2, 6sylancr 586 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
87adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
98oveqd 7465 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = ({⟨𝑂, 𝑋⟩} (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩){⟨𝑂, 𝑌⟩}))
10 mat1dim.b . . 3 𝐵 = (Base‘𝑅)
11 eqid 2740 . . 3 (.r𝑅) = (.r𝑅)
122adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Ring)
131a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝐸} ∈ Fin)
14 opex 5484 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
1514a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝐸, 𝐸⟩ ∈ V)
16 simpl 482 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
1716adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1815, 17fsnd 6905 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵)
19 mat1dim.o . . . . . . . . . 10 𝑂 = ⟨𝐸, 𝐸
2019opeq1i 4900 . . . . . . . . 9 𝑂, 𝑋⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑋
2120sneqi 4659 . . . . . . . 8 {⟨𝑂, 𝑋⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}
2221a1i 11 . . . . . . 7 (𝐸𝑉 → {⟨𝑂, 𝑋⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
23 xpsng 7173 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2423anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2522, 24feq12d 6735 . . . . . 6 (𝐸𝑉 → ({⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
2625ad2antlr 726 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
2718, 26mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵)
2810fvexi 6934 . . . . . 6 𝐵 ∈ V
2928a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ∈ V)
30 snex 5451 . . . . . . 7 {𝐸} ∈ V
3130, 30xpex 7788 . . . . . 6 ({𝐸} × {𝐸}) ∈ V
3231a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) ∈ V)
3329, 32elmapd 8898 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} ∈ (𝐵m ({𝐸} × {𝐸})) ↔ {⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵))
3427, 33mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} ∈ (𝐵m ({𝐸} × {𝐸})))
35 simpr 484 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3635adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
3715, 36fsnd 6905 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵)
3819opeq1i 4900 . . . . . . . . 9 𝑂, 𝑌⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑌
3938sneqi 4659 . . . . . . . 8 {⟨𝑂, 𝑌⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}
4039a1i 11 . . . . . . 7 (𝐸𝑉 → {⟨𝑂, 𝑌⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑌⟩})
4140, 24feq12d 6735 . . . . . 6 (𝐸𝑉 → ({⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
4241ad2antlr 726 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
4337, 42mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵)
4429, 32elmapd 8898 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩} ∈ (𝐵m ({𝐸} × {𝐸})) ↔ {⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵))
4543, 44mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (𝐵m ({𝐸} × {𝐸})))
464, 10, 11, 12, 13, 13, 13, 34, 45mamuval 22418 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))))
47 simpr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
4847adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝐸𝑉)
49 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
50 ringcmn 20305 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
5150ad2antrr 725 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ CMnd)
52 df-ov 7451 . . . . . . . . . 10 (𝐸{⟨𝑂, 𝑋⟩}𝐸) = ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5321fveq1i 6921 . . . . . . . . . 10 ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5452, 53eqtri 2768 . . . . . . . . 9 (𝐸{⟨𝑂, 𝑋⟩}𝐸) = ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5514a1i 11 . . . . . . . . . . . . 13 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
5655anim2i 616 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
5756ancomd 461 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
58 fvsng 7214 . . . . . . . . . . 11 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
5957, 58syl 17 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
6059adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
6154, 60eqtrid 2792 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑋⟩}𝐸) = 𝑋)
6261, 17eqeltrd 2844 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑋⟩}𝐸) ∈ 𝐵)
63 df-ov 7451 . . . . . . . . . 10 (𝐸{⟨𝑂, 𝑌⟩}𝐸) = ({⟨𝑂, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6439fveq1i 6921 . . . . . . . . . 10 ({⟨𝑂, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6563, 64eqtri 2768 . . . . . . . . 9 (𝐸{⟨𝑂, 𝑌⟩}𝐸) = ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6614a1i 11 . . . . . . . . . . 11 (𝑋𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
67 fvsng 7214 . . . . . . . . . . 11 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
6866, 67sylan 579 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
6968adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
7065, 69eqtrid 2792 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑌⟩}𝐸) = 𝑌)
7170, 36eqeltrd 2844 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑌⟩}𝐸) ∈ 𝐵)
7210, 11ringcl 20277 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐸{⟨𝑂, 𝑋⟩}𝐸) ∈ 𝐵 ∧ (𝐸{⟨𝑂, 𝑌⟩}𝐸) ∈ 𝐵) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵)
7312, 62, 71, 72syl3anc 1371 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵)
74 oveq2 7456 . . . . . . . . . 10 (𝑘 = 𝐸 → (𝐸{⟨𝑂, 𝑋⟩}𝑘) = (𝐸{⟨𝑂, 𝑋⟩}𝐸))
75 oveq1 7455 . . . . . . . . . 10 (𝑘 = 𝐸 → (𝑘{⟨𝑂, 𝑌⟩}𝐸) = (𝐸{⟨𝑂, 𝑌⟩}𝐸))
7674, 75oveq12d 7466 . . . . . . . . 9 (𝑘 = 𝐸 → ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
7710eqcomi 2749 . . . . . . . . . 10 (Base‘𝑅) = 𝐵
7877a1i 11 . . . . . . . . 9 (𝑘 = 𝐸 → (Base‘𝑅) = 𝐵)
7976, 78eleq12d 2838 . . . . . . . 8 (𝑘 = 𝐸 → (((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8079ralsng 4697 . . . . . . 7 (𝐸𝑉 → (∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8180ad2antlr 726 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8273, 81mpbird 257 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅))
8349, 51, 13, 82gsummptcl 20009 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) ∈ (Base‘𝑅))
84 eqid 2740 . . . . 5 (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))))
85 oveq1 7455 . . . . . . . 8 (𝑥 = 𝐸 → (𝑥{⟨𝑂, 𝑋⟩}𝑘) = (𝐸{⟨𝑂, 𝑋⟩}𝑘))
8685oveq1d 7463 . . . . . . 7 (𝑥 = 𝐸 → ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)) = ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))
8786mpteq2dv 5268 . . . . . 6 (𝑥 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))
8887oveq2d 7464 . . . . 5 (𝑥 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))))
89 oveq2 7456 . . . . . . . 8 (𝑦 = 𝐸 → (𝑘{⟨𝑂, 𝑌⟩}𝑦) = (𝑘{⟨𝑂, 𝑌⟩}𝐸))
9089oveq2d 7464 . . . . . . 7 (𝑦 = 𝐸 → ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)) = ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))
9190mpteq2dv 5268 . . . . . 6 (𝑦 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))
9291oveq2d 7464 . . . . 5 (𝑦 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))))
9384, 88, 92mposn 8144 . . . 4 ((𝐸𝑉𝐸𝑉 ∧ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) ∈ (Base‘𝑅)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩})
9448, 48, 83, 93syl3anc 1371 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩})
9519eqcomi 2749 . . . . . 6 𝐸, 𝐸⟩ = 𝑂
9695a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝐸, 𝐸⟩ = 𝑂)
97 ringmnd 20270 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
9897ad2antrr 725 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Mnd)
9910, 76gsumsn 19996 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝐸𝑉 ∧ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
10098, 48, 73, 99syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
10196, 100opeq12d 4905 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩ = ⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩)
102101sneqd 4660 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩} = {⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩})
10361, 70oveq12d 7466 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) = (𝑋(.r𝑅)𝑌))
104103opeq2d 4904 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩ = ⟨𝑂, (𝑋(.r𝑅)𝑌)⟩)
105104sneqd 4660 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩} = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
10694, 102, 1053eqtrd 2784 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
1079, 46, 1063eqtrd 2784 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {csn 4648  cop 4654  cotp 4656  cmpt 5249   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312   Σg cgsu 17500  Mndcmnd 18772  CMndccmn 19822  Ringcrg 20260   maMul cmmul 22415   Mat cmat 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-mamu 22416  df-mat 22433
This theorem is referenced by:  mat1dimcrng  22504
  Copyright terms: Public domain W3C validator