MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimmul Structured version   Visualization version   GIF version

Theorem mat1dimmul 22379
Description: The ring multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) (Proof shortened by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimmul (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimmul
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8975 . . . . 5 {𝐸} ∈ Fin
2 simpl 482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 eqid 2729 . . . . . . 7 (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩)
53, 4matmulr 22341 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩) = (.r𝐴))
65eqcomd 2735 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
71, 2, 6sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
87adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
98oveqd 7370 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = ({⟨𝑂, 𝑋⟩} (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩){⟨𝑂, 𝑌⟩}))
10 mat1dim.b . . 3 𝐵 = (Base‘𝑅)
11 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
122adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Ring)
131a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝐸} ∈ Fin)
14 opex 5411 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
1514a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝐸, 𝐸⟩ ∈ V)
16 simpl 482 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
1716adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1815, 17fsnd 6811 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵)
19 mat1dim.o . . . . . . . . . 10 𝑂 = ⟨𝐸, 𝐸
2019opeq1i 4830 . . . . . . . . 9 𝑂, 𝑋⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑋
2120sneqi 4590 . . . . . . . 8 {⟨𝑂, 𝑋⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}
2221a1i 11 . . . . . . 7 (𝐸𝑉 → {⟨𝑂, 𝑋⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
23 xpsng 7077 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2423anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2522, 24feq12d 6644 . . . . . 6 (𝐸𝑉 → ({⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
2625ad2antlr 727 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
2718, 26mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵)
2810fvexi 6840 . . . . . 6 𝐵 ∈ V
2928a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ∈ V)
30 snex 5378 . . . . . . 7 {𝐸} ∈ V
3130, 30xpex 7693 . . . . . 6 ({𝐸} × {𝐸}) ∈ V
3231a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) ∈ V)
3329, 32elmapd 8774 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} ∈ (𝐵m ({𝐸} × {𝐸})) ↔ {⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵))
3427, 33mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} ∈ (𝐵m ({𝐸} × {𝐸})))
35 simpr 484 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3635adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
3715, 36fsnd 6811 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵)
3819opeq1i 4830 . . . . . . . . 9 𝑂, 𝑌⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑌
3938sneqi 4590 . . . . . . . 8 {⟨𝑂, 𝑌⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}
4039a1i 11 . . . . . . 7 (𝐸𝑉 → {⟨𝑂, 𝑌⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑌⟩})
4140, 24feq12d 6644 . . . . . 6 (𝐸𝑉 → ({⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
4241ad2antlr 727 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
4337, 42mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵)
4429, 32elmapd 8774 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩} ∈ (𝐵m ({𝐸} × {𝐸})) ↔ {⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵))
4543, 44mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (𝐵m ({𝐸} × {𝐸})))
464, 10, 11, 12, 13, 13, 13, 34, 45mamuval 22296 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))))
47 simpr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
4847adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝐸𝑉)
49 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
50 ringcmn 20185 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
5150ad2antrr 726 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ CMnd)
52 df-ov 7356 . . . . . . . . . 10 (𝐸{⟨𝑂, 𝑋⟩}𝐸) = ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5321fveq1i 6827 . . . . . . . . . 10 ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5452, 53eqtri 2752 . . . . . . . . 9 (𝐸{⟨𝑂, 𝑋⟩}𝐸) = ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5514a1i 11 . . . . . . . . . . . . 13 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
5655anim2i 617 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
5756ancomd 461 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
58 fvsng 7120 . . . . . . . . . . 11 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
5957, 58syl 17 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
6059adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
6154, 60eqtrid 2776 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑋⟩}𝐸) = 𝑋)
6261, 17eqeltrd 2828 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑋⟩}𝐸) ∈ 𝐵)
63 df-ov 7356 . . . . . . . . . 10 (𝐸{⟨𝑂, 𝑌⟩}𝐸) = ({⟨𝑂, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6439fveq1i 6827 . . . . . . . . . 10 ({⟨𝑂, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6563, 64eqtri 2752 . . . . . . . . 9 (𝐸{⟨𝑂, 𝑌⟩}𝐸) = ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6614a1i 11 . . . . . . . . . . 11 (𝑋𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
67 fvsng 7120 . . . . . . . . . . 11 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
6866, 67sylan 580 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
6968adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
7065, 69eqtrid 2776 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑌⟩}𝐸) = 𝑌)
7170, 36eqeltrd 2828 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑌⟩}𝐸) ∈ 𝐵)
7210, 11ringcl 20153 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐸{⟨𝑂, 𝑋⟩}𝐸) ∈ 𝐵 ∧ (𝐸{⟨𝑂, 𝑌⟩}𝐸) ∈ 𝐵) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵)
7312, 62, 71, 72syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵)
74 oveq2 7361 . . . . . . . . . 10 (𝑘 = 𝐸 → (𝐸{⟨𝑂, 𝑋⟩}𝑘) = (𝐸{⟨𝑂, 𝑋⟩}𝐸))
75 oveq1 7360 . . . . . . . . . 10 (𝑘 = 𝐸 → (𝑘{⟨𝑂, 𝑌⟩}𝐸) = (𝐸{⟨𝑂, 𝑌⟩}𝐸))
7674, 75oveq12d 7371 . . . . . . . . 9 (𝑘 = 𝐸 → ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
7710eqcomi 2738 . . . . . . . . . 10 (Base‘𝑅) = 𝐵
7877a1i 11 . . . . . . . . 9 (𝑘 = 𝐸 → (Base‘𝑅) = 𝐵)
7976, 78eleq12d 2822 . . . . . . . 8 (𝑘 = 𝐸 → (((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8079ralsng 4629 . . . . . . 7 (𝐸𝑉 → (∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8180ad2antlr 727 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8273, 81mpbird 257 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅))
8349, 51, 13, 82gsummptcl 19864 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) ∈ (Base‘𝑅))
84 eqid 2729 . . . . 5 (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))))
85 oveq1 7360 . . . . . . . 8 (𝑥 = 𝐸 → (𝑥{⟨𝑂, 𝑋⟩}𝑘) = (𝐸{⟨𝑂, 𝑋⟩}𝑘))
8685oveq1d 7368 . . . . . . 7 (𝑥 = 𝐸 → ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)) = ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))
8786mpteq2dv 5189 . . . . . 6 (𝑥 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))
8887oveq2d 7369 . . . . 5 (𝑥 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))))
89 oveq2 7361 . . . . . . . 8 (𝑦 = 𝐸 → (𝑘{⟨𝑂, 𝑌⟩}𝑦) = (𝑘{⟨𝑂, 𝑌⟩}𝐸))
9089oveq2d 7369 . . . . . . 7 (𝑦 = 𝐸 → ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)) = ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))
9190mpteq2dv 5189 . . . . . 6 (𝑦 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))
9291oveq2d 7369 . . . . 5 (𝑦 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))))
9384, 88, 92mposn 8043 . . . 4 ((𝐸𝑉𝐸𝑉 ∧ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) ∈ (Base‘𝑅)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩})
9448, 48, 83, 93syl3anc 1373 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩})
9519eqcomi 2738 . . . . . 6 𝐸, 𝐸⟩ = 𝑂
9695a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝐸, 𝐸⟩ = 𝑂)
97 ringmnd 20146 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
9897ad2antrr 726 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Mnd)
9910, 76gsumsn 19851 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝐸𝑉 ∧ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
10098, 48, 73, 99syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
10196, 100opeq12d 4835 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩ = ⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩)
102101sneqd 4591 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩} = {⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩})
10361, 70oveq12d 7371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) = (𝑋(.r𝑅)𝑌))
104103opeq2d 4834 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩ = ⟨𝑂, (𝑋(.r𝑅)𝑌)⟩)
105104sneqd 4591 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩} = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
10694, 102, 1053eqtrd 2768 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
1079, 46, 1063eqtrd 2768 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  {csn 4579  cop 4585  cotp 4587  cmpt 5176   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  m cmap 8760  Fincfn 8879  Basecbs 17138  .rcmulr 17180   Σg cgsu 17362  Mndcmnd 18626  CMndccmn 19677  Ringcrg 20136   maMul cmmul 22293   Mat cmat 22310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-mamu 22294  df-mat 22311
This theorem is referenced by:  mat1dimcrng  22380
  Copyright terms: Public domain W3C validator