MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimmul Structured version   Visualization version   GIF version

Theorem mat1dimmul 22398
Description: The ring multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) (Proof shortened by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimmul (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimmul
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 9075 . . . . 5 {𝐸} ∈ Fin
2 simpl 481 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 eqid 2728 . . . . . . 7 (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩)
53, 4matmulr 22360 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩) = (.r𝐴))
65eqcomd 2734 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
71, 2, 6sylancr 585 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
87adantr 479 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (.r𝐴) = (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩))
98oveqd 7443 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = ({⟨𝑂, 𝑋⟩} (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩){⟨𝑂, 𝑌⟩}))
10 mat1dim.b . . 3 𝐵 = (Base‘𝑅)
11 eqid 2728 . . 3 (.r𝑅) = (.r𝑅)
122adantr 479 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Ring)
131a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝐸} ∈ Fin)
14 opex 5470 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
1514a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝐸, 𝐸⟩ ∈ V)
16 simpl 481 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
1716adantl 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1815, 17fsnd 6887 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵)
19 mat1dim.o . . . . . . . . . 10 𝑂 = ⟨𝐸, 𝐸
2019opeq1i 4881 . . . . . . . . 9 𝑂, 𝑋⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑋
2120sneqi 4643 . . . . . . . 8 {⟨𝑂, 𝑋⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}
2221a1i 11 . . . . . . 7 (𝐸𝑉 → {⟨𝑂, 𝑋⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
23 xpsng 7154 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2423anidms 565 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2522, 24feq12d 6715 . . . . . 6 (𝐸𝑉 → ({⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
2625ad2antlr 725 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
2718, 26mpbird 256 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵)
2810fvexi 6916 . . . . . 6 𝐵 ∈ V
2928a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ∈ V)
30 snex 5437 . . . . . . 7 {𝐸} ∈ V
3130, 30xpex 7761 . . . . . 6 ({𝐸} × {𝐸}) ∈ V
3231a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) ∈ V)
3329, 32elmapd 8865 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} ∈ (𝐵m ({𝐸} × {𝐸})) ↔ {⟨𝑂, 𝑋⟩}:({𝐸} × {𝐸})⟶𝐵))
3427, 33mpbird 256 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} ∈ (𝐵m ({𝐸} × {𝐸})))
35 simpr 483 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3635adantl 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
3715, 36fsnd 6887 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵)
3819opeq1i 4881 . . . . . . . . 9 𝑂, 𝑌⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑌
3938sneqi 4643 . . . . . . . 8 {⟨𝑂, 𝑌⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}
4039a1i 11 . . . . . . 7 (𝐸𝑉 → {⟨𝑂, 𝑌⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑌⟩})
4140, 24feq12d 6715 . . . . . 6 (𝐸𝑉 → ({⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
4241ad2antlr 725 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑌⟩}:{⟨𝐸, 𝐸⟩}⟶𝐵))
4337, 42mpbird 256 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵)
4429, 32elmapd 8865 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩} ∈ (𝐵m ({𝐸} × {𝐸})) ↔ {⟨𝑂, 𝑌⟩}:({𝐸} × {𝐸})⟶𝐵))
4543, 44mpbird 256 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (𝐵m ({𝐸} × {𝐸})))
464, 10, 11, 12, 13, 13, 13, 34, 45mamuval 22308 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (𝑅 maMul ⟨{𝐸}, {𝐸}, {𝐸}⟩){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))))
47 simpr 483 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
4847adantr 479 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝐸𝑉)
49 eqid 2728 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
50 ringcmn 20225 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
5150ad2antrr 724 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ CMnd)
52 df-ov 7429 . . . . . . . . . 10 (𝐸{⟨𝑂, 𝑋⟩}𝐸) = ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5321fveq1i 6903 . . . . . . . . . 10 ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5452, 53eqtri 2756 . . . . . . . . 9 (𝐸{⟨𝑂, 𝑋⟩}𝐸) = ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩)
5514a1i 11 . . . . . . . . . . . . 13 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
5655anim2i 615 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
5756ancomd 460 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
58 fvsng 7195 . . . . . . . . . . 11 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
5957, 58syl 17 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
6059adantl 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
6154, 60eqtrid 2780 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑋⟩}𝐸) = 𝑋)
6261, 17eqeltrd 2829 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑋⟩}𝐸) ∈ 𝐵)
63 df-ov 7429 . . . . . . . . . 10 (𝐸{⟨𝑂, 𝑌⟩}𝐸) = ({⟨𝑂, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6439fveq1i 6903 . . . . . . . . . 10 ({⟨𝑂, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6563, 64eqtri 2756 . . . . . . . . 9 (𝐸{⟨𝑂, 𝑌⟩}𝐸) = ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩)
6614a1i 11 . . . . . . . . . . 11 (𝑋𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
67 fvsng 7195 . . . . . . . . . . 11 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
6866, 67sylan 578 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
6968adantl 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨⟨𝐸, 𝐸⟩, 𝑌⟩}‘⟨𝐸, 𝐸⟩) = 𝑌)
7065, 69eqtrid 2780 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑌⟩}𝐸) = 𝑌)
7170, 36eqeltrd 2829 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝐸{⟨𝑂, 𝑌⟩}𝐸) ∈ 𝐵)
7210, 11ringcl 20197 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐸{⟨𝑂, 𝑋⟩}𝐸) ∈ 𝐵 ∧ (𝐸{⟨𝑂, 𝑌⟩}𝐸) ∈ 𝐵) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵)
7312, 62, 71, 72syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵)
74 oveq2 7434 . . . . . . . . . 10 (𝑘 = 𝐸 → (𝐸{⟨𝑂, 𝑋⟩}𝑘) = (𝐸{⟨𝑂, 𝑋⟩}𝐸))
75 oveq1 7433 . . . . . . . . . 10 (𝑘 = 𝐸 → (𝑘{⟨𝑂, 𝑌⟩}𝐸) = (𝐸{⟨𝑂, 𝑌⟩}𝐸))
7674, 75oveq12d 7444 . . . . . . . . 9 (𝑘 = 𝐸 → ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
7710eqcomi 2737 . . . . . . . . . 10 (Base‘𝑅) = 𝐵
7877a1i 11 . . . . . . . . 9 (𝑘 = 𝐸 → (Base‘𝑅) = 𝐵)
7976, 78eleq12d 2823 . . . . . . . 8 (𝑘 = 𝐸 → (((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8079ralsng 4682 . . . . . . 7 (𝐸𝑉 → (∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8180ad2antlr 725 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵))
8273, 81mpbird 256 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ∀𝑘 ∈ {𝐸} ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)) ∈ (Base‘𝑅))
8349, 51, 13, 82gsummptcl 19929 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) ∈ (Base‘𝑅))
84 eqid 2728 . . . . 5 (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))))
85 oveq1 7433 . . . . . . . 8 (𝑥 = 𝐸 → (𝑥{⟨𝑂, 𝑋⟩}𝑘) = (𝐸{⟨𝑂, 𝑋⟩}𝑘))
8685oveq1d 7441 . . . . . . 7 (𝑥 = 𝐸 → ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)) = ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))
8786mpteq2dv 5254 . . . . . 6 (𝑥 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))
8887oveq2d 7442 . . . . 5 (𝑥 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))))
89 oveq2 7434 . . . . . . . 8 (𝑦 = 𝐸 → (𝑘{⟨𝑂, 𝑌⟩}𝑦) = (𝑘{⟨𝑂, 𝑌⟩}𝐸))
9089oveq2d 7442 . . . . . . 7 (𝑦 = 𝐸 → ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)) = ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))
9190mpteq2dv 5254 . . . . . 6 (𝑦 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))
9291oveq2d 7442 . . . . 5 (𝑦 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))))
9384, 88, 92mposn 8114 . . . 4 ((𝐸𝑉𝐸𝑉 ∧ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) ∈ (Base‘𝑅)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩})
9448, 48, 83, 93syl3anc 1368 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩})
9519eqcomi 2737 . . . . . 6 𝐸, 𝐸⟩ = 𝑂
9695a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝐸, 𝐸⟩ = 𝑂)
97 ringmnd 20190 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
9897ad2antrr 724 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Mnd)
9910, 76gsumsn 19916 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝐸𝑉 ∧ ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) ∈ 𝐵) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
10098, 48, 73, 99syl3anc 1368 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸)))) = ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)))
10196, 100opeq12d 4886 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩ = ⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩)
102101sneqd 4644 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨⟨𝐸, 𝐸⟩, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝐸))))⟩} = {⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩})
10361, 70oveq12d 7444 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸)) = (𝑋(.r𝑅)𝑌))
104103opeq2d 4885 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩ = ⟨𝑂, (𝑋(.r𝑅)𝑌)⟩)
105104sneqd 4644 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, ((𝐸{⟨𝑂, 𝑋⟩}𝐸)(.r𝑅)(𝐸{⟨𝑂, 𝑌⟩}𝐸))⟩} = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
10694, 102, 1053eqtrd 2772 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{⟨𝑂, 𝑋⟩}𝑘)(.r𝑅)(𝑘{⟨𝑂, 𝑌⟩}𝑦))))) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
1079, 46, 1063eqtrd 2772 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩} (.r𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  Vcvv 3473  {csn 4632  cop 4638  cotp 4640  cmpt 5235   × cxp 5680  wf 6549  cfv 6553  (class class class)co 7426  cmpo 7428  m cmap 8851  Fincfn 8970  Basecbs 17187  .rcmulr 17241   Σg cgsu 17429  Mndcmnd 18701  CMndccmn 19742  Ringcrg 20180   maMul cmmul 22305   Mat cmat 22327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-0g 17430  df-gsum 17431  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-ur 20129  df-ring 20182  df-mamu 22306  df-mat 22328
This theorem is referenced by:  mat1dimcrng  22399
  Copyright terms: Public domain W3C validator