| Step | Hyp | Ref
| Expression |
| 1 | | snfi 9057 |
. . . . 5
⊢ {𝐸} ∈ Fin |
| 2 | | simpl 482 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) |
| 3 | | mat1dim.a |
. . . . . . 7
⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| 4 | | eqid 2735 |
. . . . . . 7
⊢ (𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉) = (𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉) |
| 5 | 3, 4 | matmulr 22376 |
. . . . . 6
⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉) = (.r‘𝐴)) |
| 6 | 5 | eqcomd 2741 |
. . . . 5
⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) →
(.r‘𝐴) =
(𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉)) |
| 7 | 1, 2, 6 | sylancr 587 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (.r‘𝐴) = (𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉)) |
| 8 | 7 | adantr 480 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (.r‘𝐴) = (𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉)) |
| 9 | 8 | oveqd 7422 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉} (.r‘𝐴){〈𝑂, 𝑌〉}) = ({〈𝑂, 𝑋〉} (𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉){〈𝑂, 𝑌〉})) |
| 10 | | mat1dim.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 11 | | eqid 2735 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 12 | 2 | adantr 480 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) |
| 13 | 1 | a1i 11 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {𝐸} ∈ Fin) |
| 14 | | opex 5439 |
. . . . . . 7
⊢
〈𝐸, 𝐸〉 ∈ V |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 〈𝐸, 𝐸〉 ∈ V) |
| 16 | | simpl 482 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 17 | 16 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 18 | 15, 17 | fsnd 6861 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}⟶𝐵) |
| 19 | | mat1dim.o |
. . . . . . . . . 10
⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| 20 | 19 | opeq1i 4852 |
. . . . . . . . 9
⊢
〈𝑂, 𝑋〉 = 〈〈𝐸, 𝐸〉, 𝑋〉 |
| 21 | 20 | sneqi 4612 |
. . . . . . . 8
⊢
{〈𝑂, 𝑋〉} = {〈〈𝐸, 𝐸〉, 𝑋〉} |
| 22 | 21 | a1i 11 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑉 → {〈𝑂, 𝑋〉} = {〈〈𝐸, 𝐸〉, 𝑋〉}) |
| 23 | | xpsng 7129 |
. . . . . . . 8
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
| 24 | 23 | anidms 566 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
| 25 | 22, 24 | feq12d 6694 |
. . . . . 6
⊢ (𝐸 ∈ 𝑉 → ({〈𝑂, 𝑋〉}:({𝐸} × {𝐸})⟶𝐵 ↔ {〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}⟶𝐵)) |
| 26 | 25 | ad2antlr 727 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉}:({𝐸} × {𝐸})⟶𝐵 ↔ {〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}⟶𝐵)) |
| 27 | 18, 26 | mpbird 257 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑋〉}:({𝐸} × {𝐸})⟶𝐵) |
| 28 | 10 | fvexi 6890 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 29 | 28 | a1i 11 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ∈ V) |
| 30 | | snex 5406 |
. . . . . . 7
⊢ {𝐸} ∈ V |
| 31 | 30, 30 | xpex 7747 |
. . . . . 6
⊢ ({𝐸} × {𝐸}) ∈ V |
| 32 | 31 | a1i 11 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝐸} × {𝐸}) ∈ V) |
| 33 | 29, 32 | elmapd 8854 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉} ∈ (𝐵 ↑m ({𝐸} × {𝐸})) ↔ {〈𝑂, 𝑋〉}:({𝐸} × {𝐸})⟶𝐵)) |
| 34 | 27, 33 | mpbird 257 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑋〉} ∈ (𝐵 ↑m ({𝐸} × {𝐸}))) |
| 35 | | simpr 484 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 36 | 35 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 37 | 15, 36 | fsnd 6861 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈〈𝐸, 𝐸〉, 𝑌〉}:{〈𝐸, 𝐸〉}⟶𝐵) |
| 38 | 19 | opeq1i 4852 |
. . . . . . . . 9
⊢
〈𝑂, 𝑌〉 = 〈〈𝐸, 𝐸〉, 𝑌〉 |
| 39 | 38 | sneqi 4612 |
. . . . . . . 8
⊢
{〈𝑂, 𝑌〉} = {〈〈𝐸, 𝐸〉, 𝑌〉} |
| 40 | 39 | a1i 11 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑉 → {〈𝑂, 𝑌〉} = {〈〈𝐸, 𝐸〉, 𝑌〉}) |
| 41 | 40, 24 | feq12d 6694 |
. . . . . 6
⊢ (𝐸 ∈ 𝑉 → ({〈𝑂, 𝑌〉}:({𝐸} × {𝐸})⟶𝐵 ↔ {〈〈𝐸, 𝐸〉, 𝑌〉}:{〈𝐸, 𝐸〉}⟶𝐵)) |
| 42 | 41 | ad2antlr 727 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉}:({𝐸} × {𝐸})⟶𝐵 ↔ {〈〈𝐸, 𝐸〉, 𝑌〉}:{〈𝐸, 𝐸〉}⟶𝐵)) |
| 43 | 37, 42 | mpbird 257 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑌〉}:({𝐸} × {𝐸})⟶𝐵) |
| 44 | 29, 32 | elmapd 8854 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉} ∈ (𝐵 ↑m ({𝐸} × {𝐸})) ↔ {〈𝑂, 𝑌〉}:({𝐸} × {𝐸})⟶𝐵)) |
| 45 | 43, 44 | mpbird 257 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑌〉} ∈ (𝐵 ↑m ({𝐸} × {𝐸}))) |
| 46 | 4, 10, 11, 12, 13, 13, 13, 34, 45 | mamuval 22331 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉} (𝑅 maMul 〈{𝐸}, {𝐸}, {𝐸}〉){〈𝑂, 𝑌〉}) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦)))))) |
| 47 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) |
| 48 | 47 | adantr 480 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐸 ∈ 𝑉) |
| 49 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 50 | | ringcmn 20242 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 51 | 50 | ad2antrr 726 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ CMnd) |
| 52 | | df-ov 7408 |
. . . . . . . . . 10
⊢ (𝐸{〈𝑂, 𝑋〉}𝐸) = ({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉) |
| 53 | 21 | fveq1i 6877 |
. . . . . . . . . 10
⊢
({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉) = ({〈〈𝐸, 𝐸〉, 𝑋〉}‘〈𝐸, 𝐸〉) |
| 54 | 52, 53 | eqtri 2758 |
. . . . . . . . 9
⊢ (𝐸{〈𝑂, 𝑋〉}𝐸) = ({〈〈𝐸, 𝐸〉, 𝑋〉}‘〈𝐸, 𝐸〉) |
| 55 | 14 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ 𝐵 → 〈𝐸, 𝐸〉 ∈ V) |
| 56 | 55 | anim2i 617 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 〈𝐸, 𝐸〉 ∈ V)) |
| 57 | 56 | ancomd 461 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵)) |
| 58 | | fvsng 7172 |
. . . . . . . . . . 11
⊢
((〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵) → ({〈〈𝐸, 𝐸〉, 𝑋〉}‘〈𝐸, 𝐸〉) = 𝑋) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈〈𝐸, 𝐸〉, 𝑋〉}‘〈𝐸, 𝐸〉) = 𝑋) |
| 60 | 59 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈〈𝐸, 𝐸〉, 𝑋〉}‘〈𝐸, 𝐸〉) = 𝑋) |
| 61 | 54, 60 | eqtrid 2782 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐸{〈𝑂, 𝑋〉}𝐸) = 𝑋) |
| 62 | 61, 17 | eqeltrd 2834 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐸{〈𝑂, 𝑋〉}𝐸) ∈ 𝐵) |
| 63 | | df-ov 7408 |
. . . . . . . . . 10
⊢ (𝐸{〈𝑂, 𝑌〉}𝐸) = ({〈𝑂, 𝑌〉}‘〈𝐸, 𝐸〉) |
| 64 | 39 | fveq1i 6877 |
. . . . . . . . . 10
⊢
({〈𝑂, 𝑌〉}‘〈𝐸, 𝐸〉) = ({〈〈𝐸, 𝐸〉, 𝑌〉}‘〈𝐸, 𝐸〉) |
| 65 | 63, 64 | eqtri 2758 |
. . . . . . . . 9
⊢ (𝐸{〈𝑂, 𝑌〉}𝐸) = ({〈〈𝐸, 𝐸〉, 𝑌〉}‘〈𝐸, 𝐸〉) |
| 66 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐵 → 〈𝐸, 𝐸〉 ∈ V) |
| 67 | | fvsng 7172 |
. . . . . . . . . . 11
⊢
((〈𝐸, 𝐸〉 ∈ V ∧ 𝑌 ∈ 𝐵) → ({〈〈𝐸, 𝐸〉, 𝑌〉}‘〈𝐸, 𝐸〉) = 𝑌) |
| 68 | 66, 67 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈〈𝐸, 𝐸〉, 𝑌〉}‘〈𝐸, 𝐸〉) = 𝑌) |
| 69 | 68 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈〈𝐸, 𝐸〉, 𝑌〉}‘〈𝐸, 𝐸〉) = 𝑌) |
| 70 | 65, 69 | eqtrid 2782 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐸{〈𝑂, 𝑌〉}𝐸) = 𝑌) |
| 71 | 70, 36 | eqeltrd 2834 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐸{〈𝑂, 𝑌〉}𝐸) ∈ 𝐵) |
| 72 | 10, 11 | ringcl 20210 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐸{〈𝑂, 𝑋〉}𝐸) ∈ 𝐵 ∧ (𝐸{〈𝑂, 𝑌〉}𝐸) ∈ 𝐵) → ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸)) ∈ 𝐵) |
| 73 | 12, 62, 71, 72 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸)) ∈ 𝐵) |
| 74 | | oveq2 7413 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐸 → (𝐸{〈𝑂, 𝑋〉}𝑘) = (𝐸{〈𝑂, 𝑋〉}𝐸)) |
| 75 | | oveq1 7412 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐸 → (𝑘{〈𝑂, 𝑌〉}𝐸) = (𝐸{〈𝑂, 𝑌〉}𝐸)) |
| 76 | 74, 75 | oveq12d 7423 |
. . . . . . . . 9
⊢ (𝑘 = 𝐸 → ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)) = ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸))) |
| 77 | 10 | eqcomi 2744 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
𝐵 |
| 78 | 77 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 = 𝐸 → (Base‘𝑅) = 𝐵) |
| 79 | 76, 78 | eleq12d 2828 |
. . . . . . . 8
⊢ (𝑘 = 𝐸 → (((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸)) ∈ 𝐵)) |
| 80 | 79 | ralsng 4651 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑉 → (∀𝑘 ∈ {𝐸} ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸)) ∈ 𝐵)) |
| 81 | 80 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (∀𝑘 ∈ {𝐸} ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)) ∈ (Base‘𝑅) ↔ ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸)) ∈ 𝐵)) |
| 82 | 73, 81 | mpbird 257 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ∀𝑘 ∈ {𝐸} ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)) ∈ (Base‘𝑅)) |
| 83 | 49, 51, 13, 82 | gsummptcl 19948 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)))) ∈ (Base‘𝑅)) |
| 84 | | eqid 2735 |
. . . . 5
⊢ (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))))) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))))) |
| 85 | | oveq1 7412 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (𝑥{〈𝑂, 𝑋〉}𝑘) = (𝐸{〈𝑂, 𝑋〉}𝑘)) |
| 86 | 85 | oveq1d 7420 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦)) = ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))) |
| 87 | 86 | mpteq2dv 5215 |
. . . . . 6
⊢ (𝑥 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦)))) |
| 88 | 87 | oveq2d 7421 |
. . . . 5
⊢ (𝑥 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))))) |
| 89 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑦 = 𝐸 → (𝑘{〈𝑂, 𝑌〉}𝑦) = (𝑘{〈𝑂, 𝑌〉}𝐸)) |
| 90 | 89 | oveq2d 7421 |
. . . . . . 7
⊢ (𝑦 = 𝐸 → ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦)) = ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸))) |
| 91 | 90 | mpteq2dv 5215 |
. . . . . 6
⊢ (𝑦 = 𝐸 → (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))) = (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)))) |
| 92 | 91 | oveq2d 7421 |
. . . . 5
⊢ (𝑦 = 𝐸 → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦)))) = (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸))))) |
| 93 | 84, 88, 92 | mposn 8102 |
. . . 4
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)))) ∈ (Base‘𝑅)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))))) = {〈〈𝐸, 𝐸〉, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸))))〉}) |
| 94 | 48, 48, 83, 93 | syl3anc 1373 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))))) = {〈〈𝐸, 𝐸〉, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸))))〉}) |
| 95 | 19 | eqcomi 2744 |
. . . . . 6
⊢
〈𝐸, 𝐸〉 = 𝑂 |
| 96 | 95 | a1i 11 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 〈𝐸, 𝐸〉 = 𝑂) |
| 97 | | ringmnd 20203 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 98 | 97 | ad2antrr 726 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Mnd) |
| 99 | 10, 76 | gsumsn 19935 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ 𝐸 ∈ 𝑉 ∧ ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸)) ∈ 𝐵) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)))) = ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸))) |
| 100 | 98, 48, 73, 99 | syl3anc 1373 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸)))) = ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸))) |
| 101 | 96, 100 | opeq12d 4857 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 〈〈𝐸, 𝐸〉, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸))))〉 = 〈𝑂, ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸))〉) |
| 102 | 101 | sneqd 4613 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈〈𝐸, 𝐸〉, (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝐸{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝐸))))〉} = {〈𝑂, ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸))〉}) |
| 103 | 61, 70 | oveq12d 7423 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸)) = (𝑋(.r‘𝑅)𝑌)) |
| 104 | 103 | opeq2d 4856 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 〈𝑂, ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸))〉 = 〈𝑂, (𝑋(.r‘𝑅)𝑌)〉) |
| 105 | 104 | sneqd 4613 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, ((𝐸{〈𝑂, 𝑋〉}𝐸)(.r‘𝑅)(𝐸{〈𝑂, 𝑌〉}𝐸))〉} = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) |
| 106 | 94, 102, 105 | 3eqtrd 2774 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (𝑅 Σg (𝑘 ∈ {𝐸} ↦ ((𝑥{〈𝑂, 𝑋〉}𝑘)(.r‘𝑅)(𝑘{〈𝑂, 𝑌〉}𝑦))))) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) |
| 107 | 9, 46, 106 | 3eqtrd 2774 |
1
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉} (.r‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) |