Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat1dimid | Structured version Visualization version GIF version |
Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
mat1dim.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
Ref | Expression |
---|---|
mat1dimid | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {〈𝑂, (1r‘𝑅)〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 8627 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐸 ∈ 𝑉 → {𝐸} ∈ Fin) |
3 | 2 | anim2i 619 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑅 ∈ Ring ∧ {𝐸} ∈ Fin)) |
4 | 3 | ancomd 465 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
6 | eqid 2758 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | eqid 2758 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
8 | 5, 6, 7 | mat1 21161 | . . 3 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
10 | simpr 488 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
11 | fvex 6676 | . . . . . . 7 ⊢ (1r‘𝑅) ∈ V | |
12 | fvex 6676 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
13 | 11, 12 | ifex 4473 | . . . . . 6 ⊢ if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) ∈ V |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
15 | eqid 2758 | . . . . . 6 ⊢ (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) | |
16 | eqeq1 2762 | . . . . . . 7 ⊢ (𝑥 = 𝐸 → (𝑥 = 𝑦 ↔ 𝐸 = 𝑦)) | |
17 | 16 | ifbid 4446 | . . . . . 6 ⊢ (𝑥 = 𝐸 → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝐸 = 𝑦, (1r‘𝑅), (0g‘𝑅))) |
18 | eqeq2 2770 | . . . . . . 7 ⊢ (𝑦 = 𝐸 → (𝐸 = 𝑦 ↔ 𝐸 = 𝐸)) | |
19 | 18 | ifbid 4446 | . . . . . 6 ⊢ (𝑦 = 𝐸 → if(𝐸 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))) |
20 | 15, 17, 19 | mposn 7809 | . . . . 5 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) ∈ V) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {〈〈𝐸, 𝐸〉, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))〉}) |
21 | 10, 10, 14, 20 | syl3anc 1368 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {〈〈𝐸, 𝐸〉, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))〉}) |
22 | eqid 2758 | . . . . . . 7 ⊢ 𝐸 = 𝐸 | |
23 | 22 | iftruei 4430 | . . . . . 6 ⊢ if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅) |
24 | 23 | opeq2i 4770 | . . . . 5 ⊢ 〈〈𝐸, 𝐸〉, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))〉 = 〈〈𝐸, 𝐸〉, (1r‘𝑅)〉 |
25 | 24 | sneqi 4536 | . . . 4 ⊢ {〈〈𝐸, 𝐸〉, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))〉} = {〈〈𝐸, 𝐸〉, (1r‘𝑅)〉} |
26 | 21, 25 | eqtrdi 2809 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {〈〈𝐸, 𝐸〉, (1r‘𝑅)〉}) |
27 | mat1dim.o | . . . . 5 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
28 | 27 | opeq1i 4769 | . . . 4 ⊢ 〈𝑂, (1r‘𝑅)〉 = 〈〈𝐸, 𝐸〉, (1r‘𝑅)〉 |
29 | 28 | sneqi 4536 | . . 3 ⊢ {〈𝑂, (1r‘𝑅)〉} = {〈〈𝐸, 𝐸〉, (1r‘𝑅)〉} |
30 | 26, 29 | eqtr4di 2811 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {〈𝑂, (1r‘𝑅)〉}) |
31 | 9, 30 | eqtrd 2793 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {〈𝑂, (1r‘𝑅)〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ifcif 4423 {csn 4525 〈cop 4531 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 Fincfn 8540 Basecbs 16555 0gc0g 16785 1rcur 19333 Ringcrg 19379 Mat cmat 21121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-hom 16661 df-cco 16662 df-0g 16787 df-gsum 16788 df-prds 16793 df-pws 16795 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-submnd 18037 df-grp 18186 df-minusg 18187 df-sbg 18188 df-mulg 18306 df-subg 18357 df-ghm 18437 df-cntz 18528 df-cmn 18989 df-abl 18990 df-mgp 19322 df-ur 19334 df-ring 19381 df-subrg 19615 df-lmod 19718 df-lss 19786 df-sra 20026 df-rgmod 20027 df-dsmm 20511 df-frlm 20526 df-mamu 21100 df-mat 21122 |
This theorem is referenced by: mat1mhm 21198 mat1scmat 21253 |
Copyright terms: Public domain | W3C validator |