MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimid Structured version   Visualization version   GIF version

Theorem mat1dimid 22467
Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimid ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝐴) = {⟨𝑂, (1r𝑅)⟩})

Proof of Theorem mat1dimid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 9081 . . . . . 6 {𝐸} ∈ Fin
21a1i 11 . . . . 5 (𝐸𝑉 → {𝐸} ∈ Fin)
32anim2i 615 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑅 ∈ Ring ∧ {𝐸} ∈ Fin))
43ancomd 460 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring))
5 mat1dim.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
6 eqid 2726 . . . 4 (1r𝑅) = (1r𝑅)
7 eqid 2726 . . . 4 (0g𝑅) = (0g𝑅)
85, 6, 7mat1 22440 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
94, 8syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
10 simpr 483 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
11 fvex 6914 . . . . . . 7 (1r𝑅) ∈ V
12 fvex 6914 . . . . . . 7 (0g𝑅) ∈ V
1311, 12ifex 4583 . . . . . 6 if(𝐸 = 𝐸, (1r𝑅), (0g𝑅)) ∈ V
1413a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → if(𝐸 = 𝐸, (1r𝑅), (0g𝑅)) ∈ V)
15 eqid 2726 . . . . . 6 (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))
16 eqeq1 2730 . . . . . . 7 (𝑥 = 𝐸 → (𝑥 = 𝑦𝐸 = 𝑦))
1716ifbid 4556 . . . . . 6 (𝑥 = 𝐸 → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝐸 = 𝑦, (1r𝑅), (0g𝑅)))
18 eqeq2 2738 . . . . . . 7 (𝑦 = 𝐸 → (𝐸 = 𝑦𝐸 = 𝐸))
1918ifbid 4556 . . . . . 6 (𝑦 = 𝐸 → if(𝐸 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝐸 = 𝐸, (1r𝑅), (0g𝑅)))
2015, 17, 19mposn 8117 . . . . 5 ((𝐸𝑉𝐸𝑉 ∧ if(𝐸 = 𝐸, (1r𝑅), (0g𝑅)) ∈ V) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = {⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r𝑅), (0g𝑅))⟩})
2110, 10, 14, 20syl3anc 1368 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = {⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r𝑅), (0g𝑅))⟩})
22 eqid 2726 . . . . . . 7 𝐸 = 𝐸
2322iftruei 4540 . . . . . 6 if(𝐸 = 𝐸, (1r𝑅), (0g𝑅)) = (1r𝑅)
2423opeq2i 4883 . . . . 5 ⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r𝑅), (0g𝑅))⟩ = ⟨⟨𝐸, 𝐸⟩, (1r𝑅)⟩
2524sneqi 4644 . . . 4 {⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r𝑅), (0g𝑅))⟩} = {⟨⟨𝐸, 𝐸⟩, (1r𝑅)⟩}
2621, 25eqtrdi 2782 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = {⟨⟨𝐸, 𝐸⟩, (1r𝑅)⟩})
27 mat1dim.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
2827opeq1i 4882 . . . 4 𝑂, (1r𝑅)⟩ = ⟨⟨𝐸, 𝐸⟩, (1r𝑅)⟩
2928sneqi 4644 . . 3 {⟨𝑂, (1r𝑅)⟩} = {⟨⟨𝐸, 𝐸⟩, (1r𝑅)⟩}
3026, 29eqtr4di 2784 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = {⟨𝑂, (1r𝑅)⟩})
319, 30eqtrd 2766 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝐴) = {⟨𝑂, (1r𝑅)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  ifcif 4533  {csn 4633  cop 4639  cfv 6554  (class class class)co 7424  cmpo 7426  Fincfn 8974  Basecbs 17213  0gc0g 17454  1rcur 20164  Ringcrg 20216   Mat cmat 22398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-subrg 20553  df-lmod 20838  df-lss 20909  df-sra 21151  df-rgmod 21152  df-dsmm 21730  df-frlm 21745  df-mamu 22382  df-mat 22399
This theorem is referenced by:  mat1mhm  22477  mat1scmat  22532
  Copyright terms: Public domain W3C validator