![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1dimid | Structured version Visualization version GIF version |
Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
mat1dim.o | ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ |
Ref | Expression |
---|---|
mat1dimid | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {⟨𝑂, (1r‘𝑅)⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 9040 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐸 ∈ 𝑉 → {𝐸} ∈ Fin) |
3 | 2 | anim2i 617 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑅 ∈ Ring ∧ {𝐸} ∈ Fin)) |
4 | 3 | ancomd 462 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
6 | eqid 2732 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | eqid 2732 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
8 | 5, 6, 7 | mat1 21940 | . . 3 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
10 | simpr 485 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
11 | fvex 6901 | . . . . . . 7 ⊢ (1r‘𝑅) ∈ V | |
12 | fvex 6901 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
13 | 11, 12 | ifex 4577 | . . . . . 6 ⊢ if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) ∈ V |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
15 | eqid 2732 | . . . . . 6 ⊢ (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) | |
16 | eqeq1 2736 | . . . . . . 7 ⊢ (𝑥 = 𝐸 → (𝑥 = 𝑦 ↔ 𝐸 = 𝑦)) | |
17 | 16 | ifbid 4550 | . . . . . 6 ⊢ (𝑥 = 𝐸 → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝐸 = 𝑦, (1r‘𝑅), (0g‘𝑅))) |
18 | eqeq2 2744 | . . . . . . 7 ⊢ (𝑦 = 𝐸 → (𝐸 = 𝑦 ↔ 𝐸 = 𝐸)) | |
19 | 18 | ifbid 4550 | . . . . . 6 ⊢ (𝑦 = 𝐸 → if(𝐸 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))) |
20 | 15, 17, 19 | mposn 8085 | . . . . 5 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) ∈ V) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))⟩}) |
21 | 10, 10, 14, 20 | syl3anc 1371 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))⟩}) |
22 | eqid 2732 | . . . . . . 7 ⊢ 𝐸 = 𝐸 | |
23 | 22 | iftruei 4534 | . . . . . 6 ⊢ if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅) |
24 | 23 | opeq2i 4876 | . . . . 5 ⊢ ⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))⟩ = ⟨⟨𝐸, 𝐸⟩, (1r‘𝑅)⟩ |
25 | 24 | sneqi 4638 | . . . 4 ⊢ {⟨⟨𝐸, 𝐸⟩, if(𝐸 = 𝐸, (1r‘𝑅), (0g‘𝑅))⟩} = {⟨⟨𝐸, 𝐸⟩, (1r‘𝑅)⟩} |
26 | 21, 25 | eqtrdi 2788 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {⟨⟨𝐸, 𝐸⟩, (1r‘𝑅)⟩}) |
27 | mat1dim.o | . . . . 5 ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ | |
28 | 27 | opeq1i 4875 | . . . 4 ⊢ ⟨𝑂, (1r‘𝑅)⟩ = ⟨⟨𝐸, 𝐸⟩, (1r‘𝑅)⟩ |
29 | 28 | sneqi 4638 | . . 3 ⊢ {⟨𝑂, (1r‘𝑅)⟩} = {⟨⟨𝐸, 𝐸⟩, (1r‘𝑅)⟩} |
30 | 26, 29 | eqtr4di 2790 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = {⟨𝑂, (1r‘𝑅)⟩}) |
31 | 9, 30 | eqtrd 2772 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {⟨𝑂, (1r‘𝑅)⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ifcif 4527 {csn 4627 ⟨cop 4633 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 Fincfn 8935 Basecbs 17140 0gc0g 17381 1rcur 19998 Ringcrg 20049 Mat cmat 21898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-subrg 20353 df-lmod 20465 df-lss 20535 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 df-mamu 21877 df-mat 21899 |
This theorem is referenced by: mat1mhm 21977 mat1scmat 22032 |
Copyright terms: Public domain | W3C validator |