MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dim0 Structured version   Visualization version   GIF version

Theorem mat1dim0 21966
Description: The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dim0 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (0g𝐴) = {⟨𝑂, (0g𝑅)⟩})

Proof of Theorem mat1dim0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 9040 . . . . . 6 {𝐸} ∈ Fin
21a1i 11 . . . . 5 (𝐸𝑉 → {𝐸} ∈ Fin)
32anim2i 617 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑅 ∈ Ring ∧ {𝐸} ∈ Fin))
43ancomd 462 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring))
5 mat1dim.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
6 eqid 2732 . . . 4 (0g𝑅) = (0g𝑅)
75, 6mat0op 21912 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g𝑅)))
84, 7syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (0g𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g𝑅)))
9 simpr 485 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
10 fvexd 6903 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (0g𝑅) ∈ V)
11 eqid 2732 . . . . 5 (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g𝑅)) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g𝑅))
12 eqidd 2733 . . . . 5 (𝑥 = 𝐸 → (0g𝑅) = (0g𝑅))
13 eqidd 2733 . . . . 5 (𝑦 = 𝐸 → (0g𝑅) = (0g𝑅))
1411, 12, 13mposn 8085 . . . 4 ((𝐸𝑉𝐸𝑉 ∧ (0g𝑅) ∈ V) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g𝑅)) = {⟨⟨𝐸, 𝐸⟩, (0g𝑅)⟩})
15 mat1dim.o . . . . . . 7 𝑂 = ⟨𝐸, 𝐸
1615eqcomi 2741 . . . . . 6 𝐸, 𝐸⟩ = 𝑂
1716opeq1i 4875 . . . . 5 ⟨⟨𝐸, 𝐸⟩, (0g𝑅)⟩ = ⟨𝑂, (0g𝑅)⟩
1817sneqi 4638 . . . 4 {⟨⟨𝐸, 𝐸⟩, (0g𝑅)⟩} = {⟨𝑂, (0g𝑅)⟩}
1914, 18eqtrdi 2788 . . 3 ((𝐸𝑉𝐸𝑉 ∧ (0g𝑅) ∈ V) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g𝑅)) = {⟨𝑂, (0g𝑅)⟩})
209, 9, 10, 19syl3anc 1371 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g𝑅)) = {⟨𝑂, (0g𝑅)⟩})
218, 20eqtrd 2772 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (0g𝐴) = {⟨𝑂, (0g𝑅)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4627  cop 4633  cfv 6540  (class class class)co 7405  cmpo 7407  Fincfn 8935  Basecbs 17140  0gc0g 17381  Ringcrg 20049   Mat cmat 21898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-prds 17389  df-pws 17391  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353  df-lmod 20465  df-lss 20535  df-sra 20777  df-rgmod 20778  df-dsmm 21278  df-frlm 21293  df-mat 21899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator