| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq2 4838 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 |
| This theorem is referenced by: fnressn 7130 fressnfv 7132 seqomlem1 8418 recmulnq 10917 addresr 11091 seqval 13977 ids1 14562 pfx1 14668 pfxccatpfx2 14702 ressinbas 17215 oduval 18249 mgmnsgrpex 18858 sgrpnmndex 18859 efgi0 19650 efgi1 19651 vrgpinv 19699 frgpnabllem1 19803 dfcnfldOLD 21280 pzriprng1ALT 21406 mat1dimid 22361 seqsval 28182 uspgr1v1eop 29176 wlk2v2e 30086 avril1 30392 nvop 30605 phop 30747 bnj601 34910 tgrpset 40739 erngset 40794 erngset-rN 40802 nregmodelf1o 45005 stgr0 47959 stgr1 47960 pgnbgreunbgrlem2lem1 48104 pgnbgreunbgrlem2lem2 48105 zlmodzxzadd 48346 lmod1 48481 lmod1zr 48482 zlmodzxzequa 48485 zlmodzxzequap 48488 cofuoppf 49139 termcfuncval 49521 termcnatval 49524 termolmd 49659 |
| Copyright terms: Public domain | W3C validator |