| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq2 4850 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: fnressn 7148 fressnfv 7150 wfrlem14OLD 8336 seqomlem1 8464 recmulnq 10978 addresr 11152 seqval 14030 ids1 14615 pfx1 14721 pfxccatpfx2 14755 ressinbas 17266 oduval 18300 mgmnsgrpex 18909 sgrpnmndex 18910 efgi0 19701 efgi1 19702 vrgpinv 19750 frgpnabllem1 19854 dfcnfldOLD 21331 pzriprng1ALT 21457 mat1dimid 22412 seqsval 28234 uspgr1v1eop 29228 wlk2v2e 30138 avril1 30444 nvop 30657 phop 30799 bnj601 34951 tgrpset 40764 erngset 40819 erngset-rN 40827 stgr0 47972 stgr1 47973 zlmodzxzadd 48333 lmod1 48468 lmod1zr 48469 zlmodzxzequa 48472 zlmodzxzequap 48475 termcfuncval 49417 termcnatval 49420 |
| Copyright terms: Public domain | W3C validator |