![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq2 4898 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: fnressn 7192 fressnfv 7194 wfrlem14OLD 8378 seqomlem1 8506 recmulnq 11033 addresr 11207 seqval 14063 ids1 14645 pfx1 14751 pfxccatpfx2 14785 ressinbas 17304 oduval 18358 mgmnsgrpex 18966 sgrpnmndex 18967 efgi0 19762 efgi1 19763 vrgpinv 19811 frgpnabllem1 19915 dfcnfldOLD 21403 pzriprng1ALT 21530 mat1dimid 22501 seqsval 28312 uspgr1v1eop 29284 wlk2v2e 30189 avril1 30495 nvop 30708 phop 30850 bnj601 34896 tgrpset 40702 erngset 40757 erngset-rN 40765 zlmodzxzadd 48083 lmod1 48221 lmod1zr 48222 zlmodzxzequa 48225 zlmodzxzequap 48228 |
Copyright terms: Public domain | W3C validator |