| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq2 4823 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: fnressn 7091 fressnfv 7093 seqomlem1 8369 recmulnq 10855 addresr 11029 seqval 13919 ids1 14505 pfx1 14610 pfxccatpfx2 14644 ressinbas 17156 oduval 18194 mgmnsgrpex 18839 sgrpnmndex 18840 efgi0 19632 efgi1 19633 vrgpinv 19681 frgpnabllem1 19785 dfcnfldOLD 21307 pzriprng1ALT 21433 mat1dimid 22389 seqsval 28218 uspgr1v1eop 29227 wlk2v2e 30137 avril1 30443 nvop 30656 phop 30798 bnj601 34932 tgrpset 40792 erngset 40847 erngset-rN 40855 nregmodelf1o 45056 stgr0 47999 stgr1 48000 pgnbgreunbgrlem2lem1 48153 pgnbgreunbgrlem2lem2 48154 gpg5edgnedg 48169 zlmodzxzadd 48397 lmod1 48532 lmod1zr 48533 zlmodzxzequa 48536 zlmodzxzequap 48539 cofuoppf 49190 termcfuncval 49572 termcnatval 49575 termolmd 49710 |
| Copyright terms: Public domain | W3C validator |