Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq2 4802 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: fnressn 7012 fressnfv 7014 wfrlem14OLD 8124 seqomlem1 8251 recmulnq 10651 addresr 10825 seqval 13660 ids1 14230 pfx1 14344 pfxccatpfx2 14378 ressinbas 16881 oduval 17922 mgmnsgrpex 18485 sgrpnmndex 18486 efgi0 19241 efgi1 19242 vrgpinv 19290 frgpnabllem1 19389 mat1dimid 21531 uspgr1v1eop 27519 wlk2v2e 28422 avril1 28728 nvop 28939 phop 29081 bnj601 32800 tgrpset 38686 erngset 38741 erngset-rN 38749 zlmodzxzadd 45582 lmod1 45721 lmod1zr 45722 zlmodzxzequa 45725 zlmodzxzequap 45728 |
Copyright terms: Public domain | W3C validator |