![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq2 4705 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1520 〈cop 4472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 |
This theorem is referenced by: fnressn 6774 fressnfv 6776 wfrlem14 7811 seqomlem1 7928 recmulnq 10221 addresr 10395 seqval 13218 ids1 13783 pfx1 13889 pfxccatpfx2 13923 ressinbas 16377 oduval 17557 mgmnsgrpex 17845 sgrpnmndex 17846 efgi0 18561 efgi1 18562 vrgpinv 18610 frgpnabllem1 18704 mat1dimid 20755 uspgr1v1eop 26702 wlk2v2e 27611 avril1 27921 nvop 28132 phop 28274 bnj601 31764 tgrpset 37362 erngset 37417 erngset-rN 37425 zlmodzxzadd 43838 lmod1 43981 lmod1zr 43982 zlmodzxzequa 43985 zlmodzxzequap 43988 |
Copyright terms: Public domain | W3C validator |