| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq2 4834 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: fnressn 7112 fressnfv 7114 seqomlem1 8395 recmulnq 10893 addresr 11067 seqval 13953 ids1 14538 pfx1 14644 pfxccatpfx2 14678 ressinbas 17191 oduval 18225 mgmnsgrpex 18834 sgrpnmndex 18835 efgi0 19626 efgi1 19627 vrgpinv 19675 frgpnabllem1 19779 dfcnfldOLD 21256 pzriprng1ALT 21382 mat1dimid 22337 seqsval 28158 uspgr1v1eop 29152 wlk2v2e 30059 avril1 30365 nvop 30578 phop 30720 bnj601 34883 tgrpset 40712 erngset 40767 erngset-rN 40775 nregmodelf1o 44978 stgr0 47932 stgr1 47933 pgnbgreunbgrlem2lem1 48077 pgnbgreunbgrlem2lem2 48078 zlmodzxzadd 48319 lmod1 48454 lmod1zr 48455 zlmodzxzequa 48458 zlmodzxzequap 48461 cofuoppf 49112 termcfuncval 49494 termcnatval 49497 termolmd 49632 |
| Copyright terms: Public domain | W3C validator |