Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq2 4805 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: fnressn 7030 fressnfv 7032 wfrlem14OLD 8153 seqomlem1 8281 recmulnq 10720 addresr 10894 seqval 13732 ids1 14302 pfx1 14416 pfxccatpfx2 14450 ressinbas 16955 oduval 18006 mgmnsgrpex 18570 sgrpnmndex 18571 efgi0 19326 efgi1 19327 vrgpinv 19375 frgpnabllem1 19474 mat1dimid 21623 uspgr1v1eop 27616 wlk2v2e 28521 avril1 28827 nvop 29038 phop 29180 bnj601 32900 tgrpset 38759 erngset 38814 erngset-rN 38822 zlmodzxzadd 45694 lmod1 45833 lmod1zr 45834 zlmodzxzequa 45837 zlmodzxzequap 45840 |
Copyright terms: Public domain | W3C validator |