![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq2 4879 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 〈cop 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 |
This theorem is referenced by: fnressn 7178 fressnfv 7180 wfrlem14OLD 8361 seqomlem1 8489 recmulnq 11002 addresr 11176 seqval 14050 ids1 14632 pfx1 14738 pfxccatpfx2 14772 ressinbas 17291 oduval 18345 mgmnsgrpex 18957 sgrpnmndex 18958 efgi0 19753 efgi1 19754 vrgpinv 19802 frgpnabllem1 19906 dfcnfldOLD 21398 pzriprng1ALT 21525 mat1dimid 22496 seqsval 28309 uspgr1v1eop 29281 wlk2v2e 30186 avril1 30492 nvop 30705 phop 30847 bnj601 34913 tgrpset 40728 erngset 40783 erngset-rN 40791 stgr0 47863 stgr1 47864 zlmodzxzadd 48203 lmod1 48338 lmod1zr 48339 zlmodzxzequa 48342 zlmodzxzequap 48345 |
Copyright terms: Public domain | W3C validator |