| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq2 4841 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 |
| This theorem is referenced by: fnressn 7133 fressnfv 7135 seqomlem1 8421 recmulnq 10924 addresr 11098 seqval 13984 ids1 14569 pfx1 14675 pfxccatpfx2 14709 ressinbas 17222 oduval 18256 mgmnsgrpex 18865 sgrpnmndex 18866 efgi0 19657 efgi1 19658 vrgpinv 19706 frgpnabllem1 19810 dfcnfldOLD 21287 pzriprng1ALT 21413 mat1dimid 22368 seqsval 28189 uspgr1v1eop 29183 wlk2v2e 30093 avril1 30399 nvop 30612 phop 30754 bnj601 34917 tgrpset 40746 erngset 40801 erngset-rN 40809 nregmodelf1o 45012 stgr0 47963 stgr1 47964 pgnbgreunbgrlem2lem1 48108 pgnbgreunbgrlem2lem2 48109 zlmodzxzadd 48350 lmod1 48485 lmod1zr 48486 zlmodzxzequa 48489 zlmodzxzequap 48492 cofuoppf 49143 termcfuncval 49525 termcnatval 49528 termolmd 49663 |
| Copyright terms: Public domain | W3C validator |