Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq2 4785 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 〈cop 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 |
This theorem is referenced by: fnressn 6973 fressnfv 6975 wfrlem14 8068 seqomlem1 8186 recmulnq 10578 addresr 10752 seqval 13585 ids1 14154 pfx1 14268 pfxccatpfx2 14302 ressinbas 16797 oduval 17796 mgmnsgrpex 18358 sgrpnmndex 18359 efgi0 19110 efgi1 19111 vrgpinv 19159 frgpnabllem1 19258 mat1dimid 21371 uspgr1v1eop 27337 wlk2v2e 28240 avril1 28546 nvop 28757 phop 28899 bnj601 32613 tgrpset 38496 erngset 38551 erngset-rN 38559 zlmodzxzadd 45367 lmod1 45506 lmod1zr 45507 zlmodzxzequa 45510 zlmodzxzequap 45513 |
Copyright terms: Public domain | W3C validator |