| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq2 4825 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 |
| This theorem is referenced by: fnressn 7092 fressnfv 7094 seqomlem1 8372 recmulnq 10858 addresr 11032 seqval 13919 ids1 14504 pfx1 14609 pfxccatpfx2 14643 ressinbas 17156 oduval 18194 mgmnsgrpex 18805 sgrpnmndex 18806 efgi0 19599 efgi1 19600 vrgpinv 19648 frgpnabllem1 19752 dfcnfldOLD 21277 pzriprng1ALT 21403 mat1dimid 22359 seqsval 28187 uspgr1v1eop 29194 wlk2v2e 30101 avril1 30407 nvop 30620 phop 30762 bnj601 34887 tgrpset 40724 erngset 40779 erngset-rN 40787 nregmodelf1o 44989 stgr0 47944 stgr1 47945 pgnbgreunbgrlem2lem1 48098 pgnbgreunbgrlem2lem2 48099 gpg5edgnedg 48114 zlmodzxzadd 48342 lmod1 48477 lmod1zr 48478 zlmodzxzequa 48481 zlmodzxzequap 48484 cofuoppf 49135 termcfuncval 49517 termcnatval 49520 termolmd 49655 |
| Copyright terms: Public domain | W3C validator |