MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimscm Structured version   Visualization version   GIF version

Theorem mat1dimscm 22421
Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimscm (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mat1dim.o . . . . . . . . . . 11 𝑂 = ⟨𝐸, 𝐸
2 opex 5466 . . . . . . . . . . 11 𝐸, 𝐸⟩ ∈ V
31, 2eqeltri 2821 . . . . . . . . . 10 𝑂 ∈ V
43a1i 11 . . . . . . . . 9 (𝑌𝐵𝑂 ∈ V)
54anim2i 615 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑂 ∈ V))
65ancomd 460 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝑂 ∈ V ∧ 𝑋𝐵))
7 fnsng 6606 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑋𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
86, 7syl 17 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
98adantl 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
10 xpsng 7148 . . . . . . . 8 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
116, 10syl 17 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1211adantl 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1312fneq1d 6648 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝑂} × {𝑋}) Fn {𝑂} ↔ {⟨𝑂, 𝑋⟩} Fn {𝑂}))
149, 13mpbird 256 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) Fn {𝑂})
15 xpsng 7148 . . . . . . . . 9 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
161sneqi 4641 . . . . . . . . 9 {𝑂} = {⟨𝐸, 𝐸⟩}
1715, 16eqtr4di 2783 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {𝑂})
1817anidms 565 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {𝑂})
1918ad2antlr 725 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {𝑂})
2019xpeq1d 5707 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({𝑂} × {𝑋}))
2120fneq1d 6648 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂} ↔ ({𝑂} × {𝑋}) Fn {𝑂}))
2214, 21mpbird 256 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂})
233a1i 11 . . . . 5 (𝑋𝐵𝑂 ∈ V)
24 fnsng 6606 . . . . 5 ((𝑂 ∈ V ∧ 𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2523, 24sylan 578 . . . 4 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2625adantl 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
27 snex 5433 . . . 4 {𝑂} ∈ V
2827a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝑂} ∈ V)
29 inidm 4217 . . 3 ({𝑂} ∩ {𝑂}) = {𝑂}
30 elsni 4647 . . . . 5 (𝑥 ∈ {𝑂} → 𝑥 = 𝑂)
31 fveq2 6896 . . . . . . 7 (𝑥 = 𝑂 → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = ((({𝐸} × {𝐸}) × {𝑋})‘𝑂))
3215anidms 565 . . . . . . . . . . . 12 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3332ad2antlr 725 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3433xpeq1d 5707 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({⟨𝐸, 𝐸⟩} × {𝑋}))
352a1i 11 . . . . . . . . . . . . . 14 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
3635anim2i 615 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
3736ancomd 460 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
38 xpsng 7148 . . . . . . . . . . . . 13 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
391eqcomi 2734 . . . . . . . . . . . . . . 15 𝐸, 𝐸⟩ = 𝑂
4039opeq1i 4878 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, 𝑋⟩ = ⟨𝑂, 𝑋
4140sneqi 4641 . . . . . . . . . . . . 13 {⟨⟨𝐸, 𝐸⟩, 𝑋⟩} = {⟨𝑂, 𝑋⟩}
4238, 41eqtrdi 2781 . . . . . . . . . . . 12 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4337, 42syl 17 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4443adantl 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4534, 44eqtrd 2765 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = {⟨𝑂, 𝑋⟩})
4645fveq1d 6898 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = ({⟨𝑂, 𝑋⟩}‘𝑂))
47 fvsng 7189 . . . . . . . . . 10 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
486, 47syl 17 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
4948adantl 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
5046, 49eqtrd 2765 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = 𝑋)
5131, 50sylan9eq 2785 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
5251ex 411 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5330, 52syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5453impcom 406 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
55 fveq2 6896 . . . . . . 7 (𝑥 = 𝑂 → ({⟨𝑂, 𝑌⟩}‘𝑥) = ({⟨𝑂, 𝑌⟩}‘𝑂))
56 fvsng 7189 . . . . . . . . 9 ((𝑂 ∈ V ∧ 𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5723, 56sylan 578 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5857adantl 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5955, 58sylan9eq 2785 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6059ex 411 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6130, 60syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6261impcom 406 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6322, 26, 28, 28, 29, 54, 62offval 7694 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
64 simprl 769 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
65 simpr 483 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
6665anim2i 615 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
67 df-3an 1086 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) ↔ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
6866, 67sylibr 233 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵))
69 mat1dim.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
70 mat1dim.b . . . . 5 𝐵 = (Base‘𝑅)
7169, 70, 1mat1dimbas 22418 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
7268, 71syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
73 eqid 2725 . . . 4 (Base‘𝐴) = (Base‘𝐴)
74 eqid 2725 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
75 eqid 2725 . . . 4 (.r𝑅) = (.r𝑅)
76 eqid 2725 . . . 4 ({𝐸} × {𝐸}) = ({𝐸} × {𝐸})
7769, 73, 70, 74, 75, 76matvsca2 22374 . . 3 ((𝑋𝐵 ∧ {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
7864, 72, 77syl2anc 582 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
79 3anass 1092 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ↔ (𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)))
8079biimpri 227 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8180adantlr 713 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8270, 75ringcl 20202 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
8381, 82syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
84 fmptsn 7176 . . 3 ((𝑂 ∈ V ∧ (𝑋(.r𝑅)𝑌) ∈ 𝐵) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
853, 83, 84sylancr 585 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
8663, 78, 853eqtr4d 2775 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  {csn 4630  cop 4636  cmpt 5232   × cxp 5676   Fn wfn 6544  cfv 6549  (class class class)co 7419  f cof 7683  Basecbs 17183  .rcmulr 17237   ·𝑠 cvsca 17240  Ringcrg 20185   Mat cmat 22351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-prds 17432  df-pws 17434  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mgp 20087  df-ring 20187  df-sra 21070  df-rgmod 21071  df-dsmm 21683  df-frlm 21698  df-mat 22352
This theorem is referenced by:  mat1scmat  22485
  Copyright terms: Public domain W3C validator