| Step | Hyp | Ref
| Expression |
| 1 | | mat1dim.o |
. . . . . . . . . . 11
⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| 2 | | opex 5468 |
. . . . . . . . . . 11
⊢
〈𝐸, 𝐸〉 ∈ V |
| 3 | 1, 2 | eqeltri 2836 |
. . . . . . . . . 10
⊢ 𝑂 ∈ V |
| 4 | 3 | a1i 11 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝐵 → 𝑂 ∈ V) |
| 5 | 4 | anim2i 617 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑂 ∈ V)) |
| 6 | 5 | ancomd 461 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑂 ∈ V ∧ 𝑋 ∈ 𝐵)) |
| 7 | | fnsng 6617 |
. . . . . . 7
⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} Fn {𝑂}) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑋〉} Fn {𝑂}) |
| 9 | 8 | adantl 481 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑋〉} Fn {𝑂}) |
| 10 | | xpsng 7158 |
. . . . . . . 8
⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → ({𝑂} × {𝑋}) = {〈𝑂, 𝑋〉}) |
| 11 | 6, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({𝑂} × {𝑋}) = {〈𝑂, 𝑋〉}) |
| 12 | 11 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝑂} × {𝑋}) = {〈𝑂, 𝑋〉}) |
| 13 | 12 | fneq1d 6660 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝑂} × {𝑋}) Fn {𝑂} ↔ {〈𝑂, 𝑋〉} Fn {𝑂})) |
| 14 | 9, 13 | mpbird 257 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝑂} × {𝑋}) Fn {𝑂}) |
| 15 | | xpsng 7158 |
. . . . . . . . 9
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
| 16 | 1 | sneqi 4636 |
. . . . . . . . 9
⊢ {𝑂} = {〈𝐸, 𝐸〉} |
| 17 | 15, 16 | eqtr4di 2794 |
. . . . . . . 8
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {𝑂}) |
| 18 | 17 | anidms 566 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {𝑂}) |
| 19 | 18 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝐸} × {𝐸}) = {𝑂}) |
| 20 | 19 | xpeq1d 5713 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({𝑂} × {𝑋})) |
| 21 | 20 | fneq1d 6660 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂} ↔ ({𝑂} × {𝑋}) Fn {𝑂})) |
| 22 | 14, 21 | mpbird 257 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂}) |
| 23 | 3 | a1i 11 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑂 ∈ V) |
| 24 | | fnsng 6617 |
. . . . 5
⊢ ((𝑂 ∈ V ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑌〉} Fn {𝑂}) |
| 25 | 23, 24 | sylan 580 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑌〉} Fn {𝑂}) |
| 26 | 25 | adantl 481 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑌〉} Fn {𝑂}) |
| 27 | | snex 5435 |
. . . 4
⊢ {𝑂} ∈ V |
| 28 | 27 | a1i 11 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {𝑂} ∈ V) |
| 29 | | inidm 4226 |
. . 3
⊢ ({𝑂} ∩ {𝑂}) = {𝑂} |
| 30 | | elsni 4642 |
. . . . 5
⊢ (𝑥 ∈ {𝑂} → 𝑥 = 𝑂) |
| 31 | | fveq2 6905 |
. . . . . . 7
⊢ (𝑥 = 𝑂 → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = ((({𝐸} × {𝐸}) × {𝑋})‘𝑂)) |
| 32 | 15 | anidms 566 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
| 33 | 32 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
| 34 | 33 | xpeq1d 5713 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({〈𝐸, 𝐸〉} × {𝑋})) |
| 35 | 2 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ 𝐵 → 〈𝐸, 𝐸〉 ∈ V) |
| 36 | 35 | anim2i 617 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 〈𝐸, 𝐸〉 ∈ V)) |
| 37 | 36 | ancomd 461 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵)) |
| 38 | | xpsng 7158 |
. . . . . . . . . . . . 13
⊢
((〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈〈𝐸, 𝐸〉, 𝑋〉}) |
| 39 | 1 | eqcomi 2745 |
. . . . . . . . . . . . . . 15
⊢
〈𝐸, 𝐸〉 = 𝑂 |
| 40 | 39 | opeq1i 4875 |
. . . . . . . . . . . . . 14
⊢
〈〈𝐸, 𝐸〉, 𝑋〉 = 〈𝑂, 𝑋〉 |
| 41 | 40 | sneqi 4636 |
. . . . . . . . . . . . 13
⊢
{〈〈𝐸,
𝐸〉, 𝑋〉} = {〈𝑂, 𝑋〉} |
| 42 | 38, 41 | eqtrdi 2792 |
. . . . . . . . . . . 12
⊢
((〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈𝑂, 𝑋〉}) |
| 43 | 37, 42 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈𝑂, 𝑋〉}) |
| 44 | 43 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈𝑂, 𝑋〉}) |
| 45 | 34, 44 | eqtrd 2776 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = {〈𝑂, 𝑋〉}) |
| 46 | 45 | fveq1d 6907 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = ({〈𝑂, 𝑋〉}‘𝑂)) |
| 47 | | fvsng 7201 |
. . . . . . . . . 10
⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
| 48 | 6, 47 | syl 17 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
| 49 | 48 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
| 50 | 46, 49 | eqtrd 2776 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = 𝑋) |
| 51 | 31, 50 | sylan9eq 2796 |
. . . . . 6
⊢ ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋) |
| 52 | 51 | ex 412 |
. . . . 5
⊢ (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)) |
| 53 | 30, 52 | syl 17 |
. . . 4
⊢ (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)) |
| 54 | 53 | impcom 407 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑥 ∈ {𝑂}) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋) |
| 55 | | fveq2 6905 |
. . . . . . 7
⊢ (𝑥 = 𝑂 → ({〈𝑂, 𝑌〉}‘𝑥) = ({〈𝑂, 𝑌〉}‘𝑂)) |
| 56 | | fvsng 7201 |
. . . . . . . . 9
⊢ ((𝑂 ∈ V ∧ 𝑌 ∈ 𝐵) → ({〈𝑂, 𝑌〉}‘𝑂) = 𝑌) |
| 57 | 23, 56 | sylan 580 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈𝑂, 𝑌〉}‘𝑂) = 𝑌) |
| 58 | 57 | adantl 481 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉}‘𝑂) = 𝑌) |
| 59 | 55, 58 | sylan9eq 2796 |
. . . . . 6
⊢ ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌) |
| 60 | 59 | ex 412 |
. . . . 5
⊢ (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌)) |
| 61 | 30, 60 | syl 17 |
. . . 4
⊢ (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌)) |
| 62 | 61 | impcom 407 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑥 ∈ {𝑂}) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌) |
| 63 | 22, 26, 28, 28, 29, 54, 62 | offval 7707 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) ∘f
(.r‘𝑅){〈𝑂, 𝑌〉}) = (𝑥 ∈ {𝑂} ↦ (𝑋(.r‘𝑅)𝑌))) |
| 64 | | simprl 770 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 65 | | simpr 484 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 66 | 65 | anim2i 617 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑌 ∈ 𝐵)) |
| 67 | | df-3an 1088 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵) ↔ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑌 ∈ 𝐵)) |
| 68 | 66, 67 | sylibr 234 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵)) |
| 69 | | mat1dim.a |
. . . . 5
⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| 70 | | mat1dim.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 71 | 69, 70, 1 | mat1dimbas 22479 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑌〉} ∈ (Base‘𝐴)) |
| 72 | 68, 71 | syl 17 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑌〉} ∈ (Base‘𝐴)) |
| 73 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 74 | | eqid 2736 |
. . . 4
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴) |
| 75 | | eqid 2736 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 76 | | eqid 2736 |
. . . 4
⊢ ({𝐸} × {𝐸}) = ({𝐸} × {𝐸}) |
| 77 | 69, 73, 70, 74, 75, 76 | matvsca2 22435 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ {〈𝑂, 𝑌〉} ∈ (Base‘𝐴)) → (𝑋( ·𝑠
‘𝐴){〈𝑂, 𝑌〉}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f
(.r‘𝑅){〈𝑂, 𝑌〉})) |
| 78 | 64, 72, 77 | syl2anc 584 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠
‘𝐴){〈𝑂, 𝑌〉}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f
(.r‘𝑅){〈𝑂, 𝑌〉})) |
| 79 | | 3anass 1094 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ↔ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
| 80 | 79 | biimpri 228 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 81 | 80 | adantlr 715 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 82 | 70, 75 | ringcl 20248 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(.r‘𝑅)𝑌) ∈ 𝐵) |
| 83 | 81, 82 | syl 17 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑅)𝑌) ∈ 𝐵) |
| 84 | | fmptsn 7188 |
. . 3
⊢ ((𝑂 ∈ V ∧ (𝑋(.r‘𝑅)𝑌) ∈ 𝐵) → {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r‘𝑅)𝑌))) |
| 85 | 3, 83, 84 | sylancr 587 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r‘𝑅)𝑌))) |
| 86 | 63, 78, 85 | 3eqtr4d 2786 |
1
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠
‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) |