MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimscm Structured version   Visualization version   GIF version

Theorem mat1dimscm 22391
Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimscm (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mat1dim.o . . . . . . . . . . 11 𝑂 = ⟨𝐸, 𝐸
2 opex 5407 . . . . . . . . . . 11 𝐸, 𝐸⟩ ∈ V
31, 2eqeltri 2829 . . . . . . . . . 10 𝑂 ∈ V
43a1i 11 . . . . . . . . 9 (𝑌𝐵𝑂 ∈ V)
54anim2i 617 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑂 ∈ V))
65ancomd 461 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝑂 ∈ V ∧ 𝑋𝐵))
7 fnsng 6538 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑋𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
86, 7syl 17 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
98adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
10 xpsng 7078 . . . . . . . 8 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
116, 10syl 17 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1211adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1312fneq1d 6579 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝑂} × {𝑋}) Fn {𝑂} ↔ {⟨𝑂, 𝑋⟩} Fn {𝑂}))
149, 13mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) Fn {𝑂})
15 xpsng 7078 . . . . . . . . 9 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
161sneqi 4586 . . . . . . . . 9 {𝑂} = {⟨𝐸, 𝐸⟩}
1715, 16eqtr4di 2786 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {𝑂})
1817anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {𝑂})
1918ad2antlr 727 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {𝑂})
2019xpeq1d 5648 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({𝑂} × {𝑋}))
2120fneq1d 6579 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂} ↔ ({𝑂} × {𝑋}) Fn {𝑂}))
2214, 21mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂})
233a1i 11 . . . . 5 (𝑋𝐵𝑂 ∈ V)
24 fnsng 6538 . . . . 5 ((𝑂 ∈ V ∧ 𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2523, 24sylan 580 . . . 4 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2625adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
27 snex 5376 . . . 4 {𝑂} ∈ V
2827a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝑂} ∈ V)
29 inidm 4176 . . 3 ({𝑂} ∩ {𝑂}) = {𝑂}
30 elsni 4592 . . . . 5 (𝑥 ∈ {𝑂} → 𝑥 = 𝑂)
31 fveq2 6828 . . . . . . 7 (𝑥 = 𝑂 → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = ((({𝐸} × {𝐸}) × {𝑋})‘𝑂))
3215anidms 566 . . . . . . . . . . . 12 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3332ad2antlr 727 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3433xpeq1d 5648 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({⟨𝐸, 𝐸⟩} × {𝑋}))
352a1i 11 . . . . . . . . . . . . . 14 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
3635anim2i 617 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
3736ancomd 461 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
38 xpsng 7078 . . . . . . . . . . . . 13 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
391eqcomi 2742 . . . . . . . . . . . . . . 15 𝐸, 𝐸⟩ = 𝑂
4039opeq1i 4827 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, 𝑋⟩ = ⟨𝑂, 𝑋
4140sneqi 4586 . . . . . . . . . . . . 13 {⟨⟨𝐸, 𝐸⟩, 𝑋⟩} = {⟨𝑂, 𝑋⟩}
4238, 41eqtrdi 2784 . . . . . . . . . . . 12 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4337, 42syl 17 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4443adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4534, 44eqtrd 2768 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = {⟨𝑂, 𝑋⟩})
4645fveq1d 6830 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = ({⟨𝑂, 𝑋⟩}‘𝑂))
47 fvsng 7120 . . . . . . . . . 10 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
486, 47syl 17 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
4948adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
5046, 49eqtrd 2768 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = 𝑋)
5131, 50sylan9eq 2788 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
5251ex 412 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5330, 52syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5453impcom 407 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
55 fveq2 6828 . . . . . . 7 (𝑥 = 𝑂 → ({⟨𝑂, 𝑌⟩}‘𝑥) = ({⟨𝑂, 𝑌⟩}‘𝑂))
56 fvsng 7120 . . . . . . . . 9 ((𝑂 ∈ V ∧ 𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5723, 56sylan 580 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5857adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5955, 58sylan9eq 2788 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6059ex 412 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6130, 60syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6261impcom 407 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6322, 26, 28, 28, 29, 54, 62offval 7625 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
64 simprl 770 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
65 simpr 484 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
6665anim2i 617 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
67 df-3an 1088 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) ↔ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
6866, 67sylibr 234 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵))
69 mat1dim.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
70 mat1dim.b . . . . 5 𝐵 = (Base‘𝑅)
7169, 70, 1mat1dimbas 22388 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
7268, 71syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
73 eqid 2733 . . . 4 (Base‘𝐴) = (Base‘𝐴)
74 eqid 2733 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
75 eqid 2733 . . . 4 (.r𝑅) = (.r𝑅)
76 eqid 2733 . . . 4 ({𝐸} × {𝐸}) = ({𝐸} × {𝐸})
7769, 73, 70, 74, 75, 76matvsca2 22344 . . 3 ((𝑋𝐵 ∧ {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
7864, 72, 77syl2anc 584 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
79 3anass 1094 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ↔ (𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)))
8079biimpri 228 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8180adantlr 715 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8270, 75ringcl 20170 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
8381, 82syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
84 fmptsn 7107 . . 3 ((𝑂 ∈ V ∧ (𝑋(.r𝑅)𝑌) ∈ 𝐵) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
853, 83, 84sylancr 587 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
8663, 78, 853eqtr4d 2778 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4575  cop 4581  cmpt 5174   × cxp 5617   Fn wfn 6481  cfv 6486  (class class class)co 7352  f cof 7614  Basecbs 17122  .rcmulr 17164   ·𝑠 cvsca 17167  Ringcrg 20153   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-pws 17355  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mgp 20061  df-ring 20155  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-mat 22324
This theorem is referenced by:  mat1scmat  22455
  Copyright terms: Public domain W3C validator