MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimscm Structured version   Visualization version   GIF version

Theorem mat1dimscm 22502
Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimscm (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mat1dim.o . . . . . . . . . . 11 𝑂 = ⟨𝐸, 𝐸
2 opex 5484 . . . . . . . . . . 11 𝐸, 𝐸⟩ ∈ V
31, 2eqeltri 2840 . . . . . . . . . 10 𝑂 ∈ V
43a1i 11 . . . . . . . . 9 (𝑌𝐵𝑂 ∈ V)
54anim2i 616 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑂 ∈ V))
65ancomd 461 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝑂 ∈ V ∧ 𝑋𝐵))
7 fnsng 6630 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑋𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
86, 7syl 17 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
98adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
10 xpsng 7173 . . . . . . . 8 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
116, 10syl 17 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1211adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1312fneq1d 6672 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝑂} × {𝑋}) Fn {𝑂} ↔ {⟨𝑂, 𝑋⟩} Fn {𝑂}))
149, 13mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) Fn {𝑂})
15 xpsng 7173 . . . . . . . . 9 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
161sneqi 4659 . . . . . . . . 9 {𝑂} = {⟨𝐸, 𝐸⟩}
1715, 16eqtr4di 2798 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {𝑂})
1817anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {𝑂})
1918ad2antlr 726 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {𝑂})
2019xpeq1d 5729 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({𝑂} × {𝑋}))
2120fneq1d 6672 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂} ↔ ({𝑂} × {𝑋}) Fn {𝑂}))
2214, 21mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂})
233a1i 11 . . . . 5 (𝑋𝐵𝑂 ∈ V)
24 fnsng 6630 . . . . 5 ((𝑂 ∈ V ∧ 𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2523, 24sylan 579 . . . 4 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2625adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
27 snex 5451 . . . 4 {𝑂} ∈ V
2827a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝑂} ∈ V)
29 inidm 4248 . . 3 ({𝑂} ∩ {𝑂}) = {𝑂}
30 elsni 4665 . . . . 5 (𝑥 ∈ {𝑂} → 𝑥 = 𝑂)
31 fveq2 6920 . . . . . . 7 (𝑥 = 𝑂 → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = ((({𝐸} × {𝐸}) × {𝑋})‘𝑂))
3215anidms 566 . . . . . . . . . . . 12 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3332ad2antlr 726 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3433xpeq1d 5729 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({⟨𝐸, 𝐸⟩} × {𝑋}))
352a1i 11 . . . . . . . . . . . . . 14 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
3635anim2i 616 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
3736ancomd 461 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
38 xpsng 7173 . . . . . . . . . . . . 13 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
391eqcomi 2749 . . . . . . . . . . . . . . 15 𝐸, 𝐸⟩ = 𝑂
4039opeq1i 4900 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, 𝑋⟩ = ⟨𝑂, 𝑋
4140sneqi 4659 . . . . . . . . . . . . 13 {⟨⟨𝐸, 𝐸⟩, 𝑋⟩} = {⟨𝑂, 𝑋⟩}
4238, 41eqtrdi 2796 . . . . . . . . . . . 12 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4337, 42syl 17 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4443adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4534, 44eqtrd 2780 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = {⟨𝑂, 𝑋⟩})
4645fveq1d 6922 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = ({⟨𝑂, 𝑋⟩}‘𝑂))
47 fvsng 7214 . . . . . . . . . 10 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
486, 47syl 17 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
4948adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
5046, 49eqtrd 2780 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = 𝑋)
5131, 50sylan9eq 2800 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
5251ex 412 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5330, 52syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5453impcom 407 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
55 fveq2 6920 . . . . . . 7 (𝑥 = 𝑂 → ({⟨𝑂, 𝑌⟩}‘𝑥) = ({⟨𝑂, 𝑌⟩}‘𝑂))
56 fvsng 7214 . . . . . . . . 9 ((𝑂 ∈ V ∧ 𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5723, 56sylan 579 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5857adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5955, 58sylan9eq 2800 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6059ex 412 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6130, 60syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6261impcom 407 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6322, 26, 28, 28, 29, 54, 62offval 7723 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
64 simprl 770 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
65 simpr 484 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
6665anim2i 616 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
67 df-3an 1089 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) ↔ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
6866, 67sylibr 234 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵))
69 mat1dim.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
70 mat1dim.b . . . . 5 𝐵 = (Base‘𝑅)
7169, 70, 1mat1dimbas 22499 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
7268, 71syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
73 eqid 2740 . . . 4 (Base‘𝐴) = (Base‘𝐴)
74 eqid 2740 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
75 eqid 2740 . . . 4 (.r𝑅) = (.r𝑅)
76 eqid 2740 . . . 4 ({𝐸} × {𝐸}) = ({𝐸} × {𝐸})
7769, 73, 70, 74, 75, 76matvsca2 22455 . . 3 ((𝑋𝐵 ∧ {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
7864, 72, 77syl2anc 583 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
79 3anass 1095 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ↔ (𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)))
8079biimpri 228 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8180adantlr 714 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8270, 75ringcl 20277 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
8381, 82syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
84 fmptsn 7201 . . 3 ((𝑂 ∈ V ∧ (𝑋(.r𝑅)𝑌) ∈ 𝐵) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
853, 83, 84sylancr 586 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
8663, 78, 853eqtr4d 2790 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cop 4654  cmpt 5249   × cxp 5698   Fn wfn 6568  cfv 6573  (class class class)co 7448  f cof 7712  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315  Ringcrg 20260   Mat cmat 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mgp 20162  df-ring 20262  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433
This theorem is referenced by:  mat1scmat  22566
  Copyright terms: Public domain W3C validator