MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimscm Structured version   Visualization version   GIF version

Theorem mat1dimscm 22482
Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimscm (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mat1dim.o . . . . . . . . . . 11 𝑂 = ⟨𝐸, 𝐸
2 opex 5468 . . . . . . . . . . 11 𝐸, 𝐸⟩ ∈ V
31, 2eqeltri 2836 . . . . . . . . . 10 𝑂 ∈ V
43a1i 11 . . . . . . . . 9 (𝑌𝐵𝑂 ∈ V)
54anim2i 617 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑂 ∈ V))
65ancomd 461 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝑂 ∈ V ∧ 𝑋𝐵))
7 fnsng 6617 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑋𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
86, 7syl 17 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
98adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
10 xpsng 7158 . . . . . . . 8 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
116, 10syl 17 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1211adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1312fneq1d 6660 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝑂} × {𝑋}) Fn {𝑂} ↔ {⟨𝑂, 𝑋⟩} Fn {𝑂}))
149, 13mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) Fn {𝑂})
15 xpsng 7158 . . . . . . . . 9 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
161sneqi 4636 . . . . . . . . 9 {𝑂} = {⟨𝐸, 𝐸⟩}
1715, 16eqtr4di 2794 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {𝑂})
1817anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {𝑂})
1918ad2antlr 727 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {𝑂})
2019xpeq1d 5713 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({𝑂} × {𝑋}))
2120fneq1d 6660 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂} ↔ ({𝑂} × {𝑋}) Fn {𝑂}))
2214, 21mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂})
233a1i 11 . . . . 5 (𝑋𝐵𝑂 ∈ V)
24 fnsng 6617 . . . . 5 ((𝑂 ∈ V ∧ 𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2523, 24sylan 580 . . . 4 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2625adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
27 snex 5435 . . . 4 {𝑂} ∈ V
2827a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝑂} ∈ V)
29 inidm 4226 . . 3 ({𝑂} ∩ {𝑂}) = {𝑂}
30 elsni 4642 . . . . 5 (𝑥 ∈ {𝑂} → 𝑥 = 𝑂)
31 fveq2 6905 . . . . . . 7 (𝑥 = 𝑂 → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = ((({𝐸} × {𝐸}) × {𝑋})‘𝑂))
3215anidms 566 . . . . . . . . . . . 12 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3332ad2antlr 727 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3433xpeq1d 5713 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({⟨𝐸, 𝐸⟩} × {𝑋}))
352a1i 11 . . . . . . . . . . . . . 14 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
3635anim2i 617 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
3736ancomd 461 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
38 xpsng 7158 . . . . . . . . . . . . 13 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
391eqcomi 2745 . . . . . . . . . . . . . . 15 𝐸, 𝐸⟩ = 𝑂
4039opeq1i 4875 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, 𝑋⟩ = ⟨𝑂, 𝑋
4140sneqi 4636 . . . . . . . . . . . . 13 {⟨⟨𝐸, 𝐸⟩, 𝑋⟩} = {⟨𝑂, 𝑋⟩}
4238, 41eqtrdi 2792 . . . . . . . . . . . 12 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4337, 42syl 17 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4443adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4534, 44eqtrd 2776 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = {⟨𝑂, 𝑋⟩})
4645fveq1d 6907 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = ({⟨𝑂, 𝑋⟩}‘𝑂))
47 fvsng 7201 . . . . . . . . . 10 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
486, 47syl 17 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
4948adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
5046, 49eqtrd 2776 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = 𝑋)
5131, 50sylan9eq 2796 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
5251ex 412 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5330, 52syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5453impcom 407 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
55 fveq2 6905 . . . . . . 7 (𝑥 = 𝑂 → ({⟨𝑂, 𝑌⟩}‘𝑥) = ({⟨𝑂, 𝑌⟩}‘𝑂))
56 fvsng 7201 . . . . . . . . 9 ((𝑂 ∈ V ∧ 𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5723, 56sylan 580 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5857adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5955, 58sylan9eq 2796 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6059ex 412 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6130, 60syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6261impcom 407 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6322, 26, 28, 28, 29, 54, 62offval 7707 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
64 simprl 770 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
65 simpr 484 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
6665anim2i 617 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
67 df-3an 1088 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) ↔ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
6866, 67sylibr 234 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵))
69 mat1dim.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
70 mat1dim.b . . . . 5 𝐵 = (Base‘𝑅)
7169, 70, 1mat1dimbas 22479 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
7268, 71syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
73 eqid 2736 . . . 4 (Base‘𝐴) = (Base‘𝐴)
74 eqid 2736 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
75 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
76 eqid 2736 . . . 4 ({𝐸} × {𝐸}) = ({𝐸} × {𝐸})
7769, 73, 70, 74, 75, 76matvsca2 22435 . . 3 ((𝑋𝐵 ∧ {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
7864, 72, 77syl2anc 584 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f (.r𝑅){⟨𝑂, 𝑌⟩}))
79 3anass 1094 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ↔ (𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)))
8079biimpri 228 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8180adantlr 715 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8270, 75ringcl 20248 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
8381, 82syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
84 fmptsn 7188 . . 3 ((𝑂 ∈ V ∧ (𝑋(.r𝑅)𝑌) ∈ 𝐵) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
853, 83, 84sylancr 587 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
8663, 78, 853eqtr4d 2786 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3479  {csn 4625  cop 4631  cmpt 5224   × cxp 5682   Fn wfn 6555  cfv 6560  (class class class)co 7432  f cof 7696  Basecbs 17248  .rcmulr 17299   ·𝑠 cvsca 17302  Ringcrg 20231   Mat cmat 22412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-prds 17493  df-pws 17495  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mgp 20139  df-ring 20233  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-mat 22413
This theorem is referenced by:  mat1scmat  22546
  Copyright terms: Public domain W3C validator