Step | Hyp | Ref
| Expression |
1 | | mat1dim.o |
. . . . . . . . . . 11
⊢ 𝑂 = 〈𝐸, 𝐸〉 |
2 | | opex 5379 |
. . . . . . . . . . 11
⊢
〈𝐸, 𝐸〉 ∈ V |
3 | 1, 2 | eqeltri 2835 |
. . . . . . . . . 10
⊢ 𝑂 ∈ V |
4 | 3 | a1i 11 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝐵 → 𝑂 ∈ V) |
5 | 4 | anim2i 617 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑂 ∈ V)) |
6 | 5 | ancomd 462 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑂 ∈ V ∧ 𝑋 ∈ 𝐵)) |
7 | | fnsng 6486 |
. . . . . . 7
⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} Fn {𝑂}) |
8 | 6, 7 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑋〉} Fn {𝑂}) |
9 | 8 | adantl 482 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑋〉} Fn {𝑂}) |
10 | | xpsng 7011 |
. . . . . . . 8
⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → ({𝑂} × {𝑋}) = {〈𝑂, 𝑋〉}) |
11 | 6, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({𝑂} × {𝑋}) = {〈𝑂, 𝑋〉}) |
12 | 11 | adantl 482 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝑂} × {𝑋}) = {〈𝑂, 𝑋〉}) |
13 | 12 | fneq1d 6526 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝑂} × {𝑋}) Fn {𝑂} ↔ {〈𝑂, 𝑋〉} Fn {𝑂})) |
14 | 9, 13 | mpbird 256 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝑂} × {𝑋}) Fn {𝑂}) |
15 | | xpsng 7011 |
. . . . . . . . 9
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
16 | 1 | sneqi 4572 |
. . . . . . . . 9
⊢ {𝑂} = {〈𝐸, 𝐸〉} |
17 | 15, 16 | eqtr4di 2796 |
. . . . . . . 8
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {𝑂}) |
18 | 17 | anidms 567 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {𝑂}) |
19 | 18 | ad2antlr 724 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝐸} × {𝐸}) = {𝑂}) |
20 | 19 | xpeq1d 5618 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({𝑂} × {𝑋})) |
21 | 20 | fneq1d 6526 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂} ↔ ({𝑂} × {𝑋}) Fn {𝑂})) |
22 | 14, 21 | mpbird 256 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂}) |
23 | 3 | a1i 11 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑂 ∈ V) |
24 | | fnsng 6486 |
. . . . 5
⊢ ((𝑂 ∈ V ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑌〉} Fn {𝑂}) |
25 | 23, 24 | sylan 580 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑌〉} Fn {𝑂}) |
26 | 25 | adantl 482 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑌〉} Fn {𝑂}) |
27 | | snex 5354 |
. . . 4
⊢ {𝑂} ∈ V |
28 | 27 | a1i 11 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {𝑂} ∈ V) |
29 | | inidm 4152 |
. . 3
⊢ ({𝑂} ∩ {𝑂}) = {𝑂} |
30 | | elsni 4578 |
. . . . 5
⊢ (𝑥 ∈ {𝑂} → 𝑥 = 𝑂) |
31 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑂 → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = ((({𝐸} × {𝐸}) × {𝑋})‘𝑂)) |
32 | 15 | anidms 567 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
33 | 32 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
34 | 33 | xpeq1d 5618 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({〈𝐸, 𝐸〉} × {𝑋})) |
35 | 2 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ 𝐵 → 〈𝐸, 𝐸〉 ∈ V) |
36 | 35 | anim2i 617 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 〈𝐸, 𝐸〉 ∈ V)) |
37 | 36 | ancomd 462 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵)) |
38 | | xpsng 7011 |
. . . . . . . . . . . . 13
⊢
((〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈〈𝐸, 𝐸〉, 𝑋〉}) |
39 | 1 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢
〈𝐸, 𝐸〉 = 𝑂 |
40 | 39 | opeq1i 4807 |
. . . . . . . . . . . . . 14
⊢
〈〈𝐸, 𝐸〉, 𝑋〉 = 〈𝑂, 𝑋〉 |
41 | 40 | sneqi 4572 |
. . . . . . . . . . . . 13
⊢
{〈〈𝐸,
𝐸〉, 𝑋〉} = {〈𝑂, 𝑋〉} |
42 | 38, 41 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢
((〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝐵) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈𝑂, 𝑋〉}) |
43 | 37, 42 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈𝑂, 𝑋〉}) |
44 | 43 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝐸, 𝐸〉} × {𝑋}) = {〈𝑂, 𝑋〉}) |
45 | 34, 44 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = {〈𝑂, 𝑋〉}) |
46 | 45 | fveq1d 6776 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = ({〈𝑂, 𝑋〉}‘𝑂)) |
47 | | fvsng 7052 |
. . . . . . . . . 10
⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
48 | 6, 47 | syl 17 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
49 | 48 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
50 | 46, 49 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = 𝑋) |
51 | 31, 50 | sylan9eq 2798 |
. . . . . 6
⊢ ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋) |
52 | 51 | ex 413 |
. . . . 5
⊢ (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)) |
53 | 30, 52 | syl 17 |
. . . 4
⊢ (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)) |
54 | 53 | impcom 408 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑥 ∈ {𝑂}) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋) |
55 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑂 → ({〈𝑂, 𝑌〉}‘𝑥) = ({〈𝑂, 𝑌〉}‘𝑂)) |
56 | | fvsng 7052 |
. . . . . . . . 9
⊢ ((𝑂 ∈ V ∧ 𝑌 ∈ 𝐵) → ({〈𝑂, 𝑌〉}‘𝑂) = 𝑌) |
57 | 23, 56 | sylan 580 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ({〈𝑂, 𝑌〉}‘𝑂) = 𝑌) |
58 | 57 | adantl 482 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉}‘𝑂) = 𝑌) |
59 | 55, 58 | sylan9eq 2798 |
. . . . . 6
⊢ ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌) |
60 | 59 | ex 413 |
. . . . 5
⊢ (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌)) |
61 | 30, 60 | syl 17 |
. . . 4
⊢ (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌)) |
62 | 61 | impcom 408 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑥 ∈ {𝑂}) → ({〈𝑂, 𝑌〉}‘𝑥) = 𝑌) |
63 | 22, 26, 28, 28, 29, 54, 62 | offval 7542 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) ∘f
(.r‘𝑅){〈𝑂, 𝑌〉}) = (𝑥 ∈ {𝑂} ↦ (𝑋(.r‘𝑅)𝑌))) |
64 | | simprl 768 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
65 | | simpr 485 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
66 | 65 | anim2i 617 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑌 ∈ 𝐵)) |
67 | | df-3an 1088 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵) ↔ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑌 ∈ 𝐵)) |
68 | 66, 67 | sylibr 233 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵)) |
69 | | mat1dim.a |
. . . . 5
⊢ 𝐴 = ({𝐸} Mat 𝑅) |
70 | | mat1dim.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
71 | 69, 70, 1 | mat1dimbas 21621 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵) → {〈𝑂, 𝑌〉} ∈ (Base‘𝐴)) |
72 | 68, 71 | syl 17 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, 𝑌〉} ∈ (Base‘𝐴)) |
73 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐴) =
(Base‘𝐴) |
74 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴) |
75 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
76 | | eqid 2738 |
. . . 4
⊢ ({𝐸} × {𝐸}) = ({𝐸} × {𝐸}) |
77 | 69, 73, 70, 74, 75, 76 | matvsca2 21577 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ {〈𝑂, 𝑌〉} ∈ (Base‘𝐴)) → (𝑋( ·𝑠
‘𝐴){〈𝑂, 𝑌〉}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f
(.r‘𝑅){〈𝑂, 𝑌〉})) |
78 | 64, 72, 77 | syl2anc 584 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠
‘𝐴){〈𝑂, 𝑌〉}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘f
(.r‘𝑅){〈𝑂, 𝑌〉})) |
79 | | 3anass 1094 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ↔ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
80 | 79 | biimpri 227 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
81 | 80 | adantlr 712 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
82 | 70, 75 | ringcl 19800 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(.r‘𝑅)𝑌) ∈ 𝐵) |
83 | 81, 82 | syl 17 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑅)𝑌) ∈ 𝐵) |
84 | | fmptsn 7039 |
. . 3
⊢ ((𝑂 ∈ V ∧ (𝑋(.r‘𝑅)𝑌) ∈ 𝐵) → {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r‘𝑅)𝑌))) |
85 | 3, 83, 84 | sylancr 587 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r‘𝑅)𝑌))) |
86 | 63, 78, 85 | 3eqtr4d 2788 |
1
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠
‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) |