| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chocin | Structured version Visualization version GIF version | ||
| Description: Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chocin | ⊢ (𝐴 ∈ Cℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → 𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)) | |
| 2 | fveq2 6873 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (⊥‘𝐴) = (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) | |
| 3 | 1, 2 | ineq12d 4194 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ∩ (⊥‘𝐴)) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)))) |
| 4 | 3 | eqeq1d 2736 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ∩ (⊥‘𝐴)) = 0ℋ ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ)) |
| 5 | h0elch 31170 | . . . 4 ⊢ 0ℋ ∈ Cℋ | |
| 6 | 5 | elimel 4568 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
| 7 | 6 | chocini 31369 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ |
| 8 | 4, 7 | dedth 4557 | 1 ⊢ (𝐴 ∈ Cℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3923 ifcif 4498 ‘cfv 6528 Cℋ cch 30844 ⊥cort 30845 0ℋc0h 30850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 ax-addf 11201 ax-mulf 11202 ax-hilex 30914 ax-hfvadd 30915 ax-hvcom 30916 ax-hvass 30917 ax-hv0cl 30918 ax-hvaddid 30919 ax-hfvmul 30920 ax-hvmulid 30921 ax-hvmulass 30922 ax-hvdistr1 30923 ax-hvdistr2 30924 ax-hvmul0 30925 ax-hfi 30994 ax-his1 30997 ax-his2 30998 ax-his3 30999 ax-his4 31000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-map 8837 df-pm 8838 df-en 8955 df-dom 8956 df-sdom 8957 df-sup 9449 df-inf 9450 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-n0 12495 df-z 12582 df-uz 12846 df-q 12958 df-rp 13002 df-xneg 13121 df-xadd 13122 df-xmul 13123 df-icc 13361 df-seq 14010 df-exp 14070 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-topgen 17444 df-psmet 21294 df-xmet 21295 df-met 21296 df-bl 21297 df-mopn 21298 df-top 22819 df-topon 22836 df-bases 22871 df-lm 23154 df-haus 23240 df-grpo 30408 df-gid 30409 df-ginv 30410 df-gdiv 30411 df-ablo 30460 df-vc 30474 df-nv 30507 df-va 30510 df-ba 30511 df-sm 30512 df-0v 30513 df-vs 30514 df-nmcv 30515 df-ims 30516 df-hnorm 30883 df-hvsub 30886 df-hlim 30887 df-sh 31122 df-ch 31136 df-oc 31167 df-ch0 31168 |
| This theorem is referenced by: chssoc 31411 fh1 31533 fh2 31534 |
| Copyright terms: Public domain | W3C validator |