Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnle Structured version   Visualization version   GIF version

Theorem lhpocnle 38292
Description: The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
lhpocnle.l = (le‘𝐾)
lhpocnle.o = (oc‘𝐾)
lhpocnle.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpocnle ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) 𝑊)

Proof of Theorem lhpocnle
StepHypRef Expression
1 hlatl 37635 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 481 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ AtLat)
3 simpr 485 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊𝐻)
4 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
5 lhpocnle.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
64, 5lhpbase 38274 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7 lhpocnle.o . . . . . . 7 = (oc‘𝐾)
8 eqid 2736 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
94, 7, 8, 5lhpoc 38290 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊𝐻 ↔ ( 𝑊) ∈ (Atoms‘𝐾)))
106, 9sylan2 593 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊𝐻 ↔ ( 𝑊) ∈ (Atoms‘𝐾)))
113, 10mpbid 231 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ (Atoms‘𝐾))
12 eqid 2736 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
1312, 8atn0 37583 . . . 4 ((𝐾 ∈ AtLat ∧ ( 𝑊) ∈ (Atoms‘𝐾)) → ( 𝑊) ≠ (0.‘𝐾))
142, 11, 13syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ≠ (0.‘𝐾))
1514neneqd 2945 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) = (0.‘𝐾))
16 simpr 485 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → ( 𝑊) 𝑊)
17 hllat 37638 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817ad2antrr 723 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → 𝐾 ∈ Lat)
19 hlop 37637 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
2019ad2antrr 723 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → 𝐾 ∈ OP)
216ad2antlr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → 𝑊 ∈ (Base‘𝐾))
224, 7opoccl 37469 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ( 𝑊) ∈ (Base‘𝐾))
2320, 21, 22syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → ( 𝑊) ∈ (Base‘𝐾))
24 lhpocnle.l . . . . . . 7 = (le‘𝐾)
254, 24latref 18256 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑊) ∈ (Base‘𝐾)) → ( 𝑊) ( 𝑊))
2618, 23, 25syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → ( 𝑊) ( 𝑊))
27 eqid 2736 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
284, 24, 27latlem12 18281 . . . . . 6 ((𝐾 ∈ Lat ∧ (( 𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾) ∧ ( 𝑊) ∈ (Base‘𝐾))) → ((( 𝑊) 𝑊 ∧ ( 𝑊) ( 𝑊)) ↔ ( 𝑊) (𝑊(meet‘𝐾)( 𝑊))))
2918, 23, 21, 23, 28syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → ((( 𝑊) 𝑊 ∧ ( 𝑊) ( 𝑊)) ↔ ( 𝑊) (𝑊(meet‘𝐾)( 𝑊))))
3016, 26, 29mpbi2and 709 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → ( 𝑊) (𝑊(meet‘𝐾)( 𝑊)))
314, 7, 27, 12opnoncon 37483 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊(meet‘𝐾)( 𝑊)) = (0.‘𝐾))
3220, 21, 31syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → (𝑊(meet‘𝐾)( 𝑊)) = (0.‘𝐾))
3330, 32breqtrd 5118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → ( 𝑊) (0.‘𝐾))
344, 24, 12ople0 37462 . . . 4 ((𝐾 ∈ OP ∧ ( 𝑊) ∈ (Base‘𝐾)) → (( 𝑊) (0.‘𝐾) ↔ ( 𝑊) = (0.‘𝐾)))
3520, 23, 34syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → (( 𝑊) (0.‘𝐾) ↔ ( 𝑊) = (0.‘𝐾)))
3633, 35mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑊) 𝑊) → ( 𝑊) = (0.‘𝐾))
3715, 36mtand 813 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5092  cfv 6479  (class class class)co 7337  Basecbs 17009  lecple 17066  occoc 17067  meetcmee 18127  0.cp0 18238  Latclat 18246  OPcops 37447  Atomscatm 37538  AtLatcal 37539  HLchlt 37625  LHypclh 38260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-proset 18110  df-poset 18128  df-plt 18145  df-lub 18161  df-glb 18162  df-meet 18164  df-p0 18240  df-p1 18241  df-lat 18247  df-oposet 37451  df-ol 37453  df-oml 37454  df-covers 37541  df-ats 37542  df-atl 37573  df-cvlat 37597  df-hlat 37626  df-lhyp 38264
This theorem is referenced by:  lhpocnel  38294
  Copyright terms: Public domain W3C validator