Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Visualization version   GIF version

Theorem pnonsingN 39927
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atoms‘𝐾)
2polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
pnonsingN ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5 𝐴 = (Atoms‘𝐾)
2 2polat.p . . . . 5 𝑃 = (⊥𝑃𝐾)
31, 22polssN 39909 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ (𝑃‘(𝑃𝑋)))
43ssrind 4207 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)))
5 eqid 2729 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
6 eqid 2729 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
75, 1, 6, 22polvalN 39908 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃‘(𝑃𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
8 eqid 2729 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
95, 8, 1, 6, 2polval2N 39900 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
107, 9ineq12d 4184 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
11 hlop 39355 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1211adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
13 hlclat 39351 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
14 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1514, 1atssbase 39283 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
16 sstr 3955 . . . . . . . . 9 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1715, 16mpan2 691 . . . . . . . 8 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1814, 5clatlubcl 18462 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1913, 17, 18syl2an 596 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
20 eqid 2729 . . . . . . . 8 (meet‘𝐾) = (meet‘𝐾)
21 eqid 2729 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
2214, 8, 20, 21opnoncon 39201 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2312, 19, 22syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2423fveq2d 6862 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ((pmap‘𝐾)‘(0.‘𝐾)))
25 simpl 482 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2614, 8opoccl 39187 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2712, 19, 26syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2814, 20, 1, 6pmapmeet 39767 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
2925, 19, 27, 28syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
30 hlatl 39353 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3130adantr 480 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ AtLat)
3221, 6pmap0 39759 . . . . . 6 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3424, 29, 333eqtr3d 2772 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ∅)
3510, 34eqtrd 2764 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = ∅)
364, 35sseqtrd 3983 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ∅)
37 ss0b 4364 . 2 ((𝑋 ∩ (𝑃𝑋)) ⊆ ∅ ↔ (𝑋 ∩ (𝑃𝑋)) = ∅)
3836, 37sylib 218 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  occoc 17228  lubclub 18270  meetcmee 18273  0.cp0 18382  CLatccla 18457  OPcops 39165  Atomscatm 39256  AtLatcal 39257  HLchlt 39343  pmapcpmap 39491  𝑃cpolN 39896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-pmap 39498  df-polarityN 39897
This theorem is referenced by:  osumcllem4N  39953  pexmidN  39963  pexmidlem1N  39964
  Copyright terms: Public domain W3C validator