Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Visualization version   GIF version

Theorem pnonsingN 37222
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atoms‘𝐾)
2polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
pnonsingN ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5 𝐴 = (Atoms‘𝐾)
2 2polat.p . . . . 5 𝑃 = (⊥𝑃𝐾)
31, 22polssN 37204 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ (𝑃‘(𝑃𝑋)))
43ssrind 4165 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)))
5 eqid 2801 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
6 eqid 2801 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
75, 1, 6, 22polvalN 37203 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃‘(𝑃𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
8 eqid 2801 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
95, 8, 1, 6, 2polval2N 37195 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
107, 9ineq12d 4143 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
11 hlop 36651 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1211adantr 484 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
13 hlclat 36647 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
14 eqid 2801 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1514, 1atssbase 36579 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
16 sstr 3926 . . . . . . . . 9 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1715, 16mpan2 690 . . . . . . . 8 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1814, 5clatlubcl 17717 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1913, 17, 18syl2an 598 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
20 eqid 2801 . . . . . . . 8 (meet‘𝐾) = (meet‘𝐾)
21 eqid 2801 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
2214, 8, 20, 21opnoncon 36497 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2312, 19, 22syl2anc 587 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2423fveq2d 6653 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ((pmap‘𝐾)‘(0.‘𝐾)))
25 simpl 486 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2614, 8opoccl 36483 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2712, 19, 26syl2anc 587 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2814, 20, 1, 6pmapmeet 37062 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
2925, 19, 27, 28syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
30 hlatl 36649 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3130adantr 484 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ AtLat)
3221, 6pmap0 37054 . . . . . 6 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3424, 29, 333eqtr3d 2844 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ∅)
3510, 34eqtrd 2836 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = ∅)
364, 35sseqtrd 3958 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ∅)
37 ss0b 4308 . 2 ((𝑋 ∩ (𝑃𝑋)) ⊆ ∅ ↔ (𝑋 ∩ (𝑃𝑋)) = ∅)
3836, 37sylib 221 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  cin 3883  wss 3884  c0 4246  cfv 6328  (class class class)co 7139  Basecbs 16478  occoc 16568  lubclub 17547  meetcmee 17550  0.cp0 17642  CLatccla 17712  OPcops 36461  Atomscatm 36552  AtLatcal 36553  HLchlt 36639  pmapcpmap 36786  𝑃cpolN 37191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-riotaBAD 36242
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-undef 7926  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-pmap 36793  df-polarityN 37192
This theorem is referenced by:  osumcllem4N  37248  pexmidN  37258  pexmidlem1N  37259
  Copyright terms: Public domain W3C validator