Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Visualization version   GIF version

Theorem pnonsingN 38399
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atomsβ€˜πΎ)
2polat.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pnonsingN ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
2 2polat.p . . . . 5 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
31, 22polssN 38381 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† (π‘ƒβ€˜(π‘ƒβ€˜π‘‹)))
43ssrind 4196 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)))
5 eqid 2737 . . . . . 6 (lubβ€˜πΎ) = (lubβ€˜πΎ)
6 eqid 2737 . . . . . 6 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
75, 1, 6, 22polvalN 38380 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) = ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))
8 eqid 2737 . . . . . 6 (ocβ€˜πΎ) = (ocβ€˜πΎ)
95, 8, 1, 6, 2polval2N 38372 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))))
107, 9ineq12d 4174 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
11 hlop 37827 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
1211adantr 482 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ OP)
13 hlclat 37823 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
14 eqid 2737 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1514, 1atssbase 37755 . . . . . . . . 9 𝐴 βŠ† (Baseβ€˜πΎ)
16 sstr 3953 . . . . . . . . 9 ((𝑋 βŠ† 𝐴 ∧ 𝐴 βŠ† (Baseβ€˜πΎ)) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1715, 16mpan2 690 . . . . . . . 8 (𝑋 βŠ† 𝐴 β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1814, 5clatlubcl 18393 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
1913, 17, 18syl2an 597 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
20 eqid 2737 . . . . . . . 8 (meetβ€˜πΎ) = (meetβ€˜πΎ)
21 eqid 2737 . . . . . . . 8 (0.β€˜πΎ) = (0.β€˜πΎ)
2214, 8, 20, 21opnoncon 37673 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) = (0.β€˜πΎ))
2312, 19, 22syl2anc 585 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) = (0.β€˜πΎ))
2423fveq2d 6847 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)))
25 simpl 484 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ HL)
2614, 8opoccl 37659 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
2712, 19, 26syl2anc 585 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
2814, 20, 1, 6pmapmeet 38239 . . . . . 6 ((𝐾 ∈ HL ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ) ∧ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
2925, 19, 27, 28syl3anc 1372 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
30 hlatl 37825 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
3130adantr 482 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ AtLat)
3221, 6pmap0 38231 . . . . . 6 (𝐾 ∈ AtLat β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
3424, 29, 333eqtr3d 2785 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = βˆ…)
3510, 34eqtrd 2777 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
364, 35sseqtrd 3985 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† βˆ…)
37 ss0b 4358 . 2 ((𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† βˆ… ↔ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
3836, 37sylib 217 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   ∩ cin 3910   βŠ† wss 3911  βˆ…c0 4283  β€˜cfv 6497  (class class class)co 7358  Basecbs 17084  occoc 17142  lubclub 18199  meetcmee 18202  0.cp0 18313  CLatccla 18388  OPcops 37637  Atomscatm 37728  AtLatcal 37729  HLchlt 37815  pmapcpmap 37963  βŠ₯𝑃cpolN 38368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-p1 18316  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-pmap 37970  df-polarityN 38369
This theorem is referenced by:  osumcllem4N  38425  pexmidN  38435  pexmidlem1N  38436
  Copyright terms: Public domain W3C validator