Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Visualization version   GIF version

Theorem pnonsingN 39935
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atoms‘𝐾)
2polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
pnonsingN ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5 𝐴 = (Atoms‘𝐾)
2 2polat.p . . . . 5 𝑃 = (⊥𝑃𝐾)
31, 22polssN 39917 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ (𝑃‘(𝑃𝑋)))
43ssrind 4244 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)))
5 eqid 2737 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
6 eqid 2737 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
75, 1, 6, 22polvalN 39916 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃‘(𝑃𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
8 eqid 2737 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
95, 8, 1, 6, 2polval2N 39908 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
107, 9ineq12d 4221 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
11 hlop 39363 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1211adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
13 hlclat 39359 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
14 eqid 2737 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1514, 1atssbase 39291 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
16 sstr 3992 . . . . . . . . 9 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1715, 16mpan2 691 . . . . . . . 8 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1814, 5clatlubcl 18548 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1913, 17, 18syl2an 596 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
20 eqid 2737 . . . . . . . 8 (meet‘𝐾) = (meet‘𝐾)
21 eqid 2737 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
2214, 8, 20, 21opnoncon 39209 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2312, 19, 22syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2423fveq2d 6910 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ((pmap‘𝐾)‘(0.‘𝐾)))
25 simpl 482 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2614, 8opoccl 39195 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2712, 19, 26syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2814, 20, 1, 6pmapmeet 39775 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
2925, 19, 27, 28syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
30 hlatl 39361 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3130adantr 480 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ AtLat)
3221, 6pmap0 39767 . . . . . 6 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3424, 29, 333eqtr3d 2785 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ∅)
3510, 34eqtrd 2777 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = ∅)
364, 35sseqtrd 4020 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ∅)
37 ss0b 4401 . 2 ((𝑋 ∩ (𝑃𝑋)) ⊆ ∅ ↔ (𝑋 ∩ (𝑃𝑋)) = ∅)
3836, 37sylib 218 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3950  wss 3951  c0 4333  cfv 6561  (class class class)co 7431  Basecbs 17247  occoc 17305  lubclub 18355  meetcmee 18358  0.cp0 18468  CLatccla 18543  OPcops 39173  Atomscatm 39264  AtLatcal 39265  HLchlt 39351  pmapcpmap 39499  𝑃cpolN 39904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-pmap 39506  df-polarityN 39905
This theorem is referenced by:  osumcllem4N  39961  pexmidN  39971  pexmidlem1N  39972
  Copyright terms: Public domain W3C validator