Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Visualization version   GIF version

Theorem pnonsingN 39317
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atomsβ€˜πΎ)
2polat.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pnonsingN ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
2 2polat.p . . . . 5 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
31, 22polssN 39299 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† (π‘ƒβ€˜(π‘ƒβ€˜π‘‹)))
43ssrind 4230 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)))
5 eqid 2726 . . . . . 6 (lubβ€˜πΎ) = (lubβ€˜πΎ)
6 eqid 2726 . . . . . 6 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
75, 1, 6, 22polvalN 39298 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) = ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))
8 eqid 2726 . . . . . 6 (ocβ€˜πΎ) = (ocβ€˜πΎ)
95, 8, 1, 6, 2polval2N 39290 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))))
107, 9ineq12d 4208 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
11 hlop 38745 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
1211adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ OP)
13 hlclat 38741 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
14 eqid 2726 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1514, 1atssbase 38673 . . . . . . . . 9 𝐴 βŠ† (Baseβ€˜πΎ)
16 sstr 3985 . . . . . . . . 9 ((𝑋 βŠ† 𝐴 ∧ 𝐴 βŠ† (Baseβ€˜πΎ)) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1715, 16mpan2 688 . . . . . . . 8 (𝑋 βŠ† 𝐴 β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1814, 5clatlubcl 18468 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
1913, 17, 18syl2an 595 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
20 eqid 2726 . . . . . . . 8 (meetβ€˜πΎ) = (meetβ€˜πΎ)
21 eqid 2726 . . . . . . . 8 (0.β€˜πΎ) = (0.β€˜πΎ)
2214, 8, 20, 21opnoncon 38591 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) = (0.β€˜πΎ))
2312, 19, 22syl2anc 583 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) = (0.β€˜πΎ))
2423fveq2d 6889 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)))
25 simpl 482 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ HL)
2614, 8opoccl 38577 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
2712, 19, 26syl2anc 583 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
2814, 20, 1, 6pmapmeet 39157 . . . . . 6 ((𝐾 ∈ HL ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ) ∧ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
2925, 19, 27, 28syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
30 hlatl 38743 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
3130adantr 480 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ AtLat)
3221, 6pmap0 39149 . . . . . 6 (𝐾 ∈ AtLat β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
3424, 29, 333eqtr3d 2774 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = βˆ…)
3510, 34eqtrd 2766 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
364, 35sseqtrd 4017 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† βˆ…)
37 ss0b 4392 . 2 ((𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† βˆ… ↔ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
3836, 37sylib 217 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   ∩ cin 3942   βŠ† wss 3943  βˆ…c0 4317  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  occoc 17214  lubclub 18274  meetcmee 18277  0.cp0 18388  CLatccla 18463  OPcops 38555  Atomscatm 38646  AtLatcal 38647  HLchlt 38733  pmapcpmap 38881  βŠ₯𝑃cpolN 39286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-pmap 38888  df-polarityN 39287
This theorem is referenced by:  osumcllem4N  39343  pexmidN  39353  pexmidlem1N  39354
  Copyright terms: Public domain W3C validator