Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Visualization version   GIF version

Theorem pnonsingN 38792
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atomsβ€˜πΎ)
2polat.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pnonsingN ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
2 2polat.p . . . . 5 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
31, 22polssN 38774 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† (π‘ƒβ€˜(π‘ƒβ€˜π‘‹)))
43ssrind 4234 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)))
5 eqid 2732 . . . . . 6 (lubβ€˜πΎ) = (lubβ€˜πΎ)
6 eqid 2732 . . . . . 6 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
75, 1, 6, 22polvalN 38773 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) = ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))
8 eqid 2732 . . . . . 6 (ocβ€˜πΎ) = (ocβ€˜πΎ)
95, 8, 1, 6, 2polval2N 38765 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ƒβ€˜π‘‹) = ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))))
107, 9ineq12d 4212 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
11 hlop 38220 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
1211adantr 481 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ OP)
13 hlclat 38216 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
14 eqid 2732 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1514, 1atssbase 38148 . . . . . . . . 9 𝐴 βŠ† (Baseβ€˜πΎ)
16 sstr 3989 . . . . . . . . 9 ((𝑋 βŠ† 𝐴 ∧ 𝐴 βŠ† (Baseβ€˜πΎ)) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1715, 16mpan2 689 . . . . . . . 8 (𝑋 βŠ† 𝐴 β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1814, 5clatlubcl 18452 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
1913, 17, 18syl2an 596 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
20 eqid 2732 . . . . . . . 8 (meetβ€˜πΎ) = (meetβ€˜πΎ)
21 eqid 2732 . . . . . . . 8 (0.β€˜πΎ) = (0.β€˜πΎ)
2214, 8, 20, 21opnoncon 38066 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) = (0.β€˜πΎ))
2312, 19, 22syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) = (0.β€˜πΎ))
2423fveq2d 6892 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)))
25 simpl 483 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ HL)
2614, 8opoccl 38052 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
2712, 19, 26syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
2814, 20, 1, 6pmapmeet 38632 . . . . . 6 ((𝐾 ∈ HL ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ) ∧ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
2925, 19, 27, 28syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))))
30 hlatl 38218 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
3130adantr 481 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ AtLat)
3221, 6pmap0 38624 . . . . . 6 (𝐾 ∈ AtLat β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜(0.β€˜πΎ)) = βˆ…)
3424, 29, 333eqtr3d 2780 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))) = βˆ…)
3510, 34eqtrd 2772 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((π‘ƒβ€˜(π‘ƒβ€˜π‘‹)) ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
364, 35sseqtrd 4021 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† βˆ…)
37 ss0b 4396 . 2 ((𝑋 ∩ (π‘ƒβ€˜π‘‹)) βŠ† βˆ… ↔ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
3836, 37sylib 217 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∩ (π‘ƒβ€˜π‘‹)) = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  occoc 17201  lubclub 18258  meetcmee 18261  0.cp0 18372  CLatccla 18447  OPcops 38030  Atomscatm 38121  AtLatcal 38122  HLchlt 38208  pmapcpmap 38356  βŠ₯𝑃cpolN 38761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-pmap 38363  df-polarityN 38762
This theorem is referenced by:  osumcllem4N  38818  pexmidN  38828  pexmidlem1N  38829
  Copyright terms: Public domain W3C validator