Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochnoncon Structured version   Visualization version   GIF version

Theorem dochnoncon 39147
Description: Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochnoncon.h 𝐻 = (LHyp‘𝐾)
dochnoncon.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochnoncon.s 𝑆 = (LSubSp‘𝑈)
dochnoncon.z 0 = (0g𝑈)
dochnoncon.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochnoncon (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (𝑋 ∩ ( 𝑋)) = { 0 })

Proof of Theorem dochnoncon
StepHypRef Expression
1 eqid 2737 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
2 dochnoncon.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
31, 2lssss 19978 . . . . 5 (𝑋𝑆𝑋 ⊆ (Base‘𝑈))
4 dochnoncon.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 dochnoncon.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 dochnoncon.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
74, 5, 1, 6dochocss 39122 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → 𝑋 ⊆ ( ‘( 𝑋)))
83, 7sylan2 596 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → 𝑋 ⊆ ( ‘( 𝑋)))
98ssrind 4155 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (𝑋 ∩ ( 𝑋)) ⊆ (( ‘( 𝑋)) ∩ ( 𝑋)))
10 simpl 486 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 eqid 2737 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2737 . . . . . . . . . 10 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
13 eqid 2737 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1411, 4, 12, 5, 13dihf11 39023 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
1514adantr 484 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
16 f1f1orn 6677 . . . . . . . 8 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
1715, 16syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
184, 12, 5, 1, 6dochcl 39109 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
193, 18sylan2 596 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
204, 5, 12, 13dihrnlss 39033 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( 𝑋) ∈ (LSubSp‘𝑈))
2119, 20syldan 594 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ( 𝑋) ∈ (LSubSp‘𝑈))
221, 13lssss 19978 . . . . . . . . 9 (( 𝑋) ∈ (LSubSp‘𝑈) → ( 𝑋) ⊆ (Base‘𝑈))
2321, 22syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ( 𝑋) ⊆ (Base‘𝑈))
244, 12, 5, 1, 6dochcl 39109 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ⊆ (Base‘𝑈)) → ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
2523, 24syldan 594 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
26 f1ocnvdm 7100 . . . . . . 7 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))) ∈ (Base‘𝐾))
2717, 25, 26syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))) ∈ (Base‘𝐾))
28 hlop 37118 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
2928ad2antrr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → 𝐾 ∈ OP)
30 eqid 2737 . . . . . . . 8 (oc‘𝐾) = (oc‘𝐾)
3111, 30opoccl 36950 . . . . . . 7 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) ∈ (Base‘𝐾))
3229, 27, 31syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) ∈ (Base‘𝐾))
33 eqid 2737 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
3411, 33, 4, 12dihmeet 39099 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘((((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))(meet‘𝐾)((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))))) = ((((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) ∩ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))))))
3510, 27, 32, 34syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (((DIsoH‘𝐾)‘𝑊)‘((((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))(meet‘𝐾)((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))))) = ((((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) ∩ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))))))
36 eqid 2737 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
3711, 30, 33, 36opnoncon 36964 . . . . . . 7 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))) ∈ (Base‘𝐾)) → ((((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))(meet‘𝐾)((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))))) = (0.‘𝐾))
3829, 27, 37syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ((((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))(meet‘𝐾)((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))))) = (0.‘𝐾))
3938fveq2d 6726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (((DIsoH‘𝐾)‘𝑊)‘((((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))(meet‘𝐾)((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))))) = (((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾)))
4035, 39eqtr3d 2779 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ((((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) ∩ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))))) = (((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾)))
414, 12dihcnvid2 39029 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) = ( ‘( 𝑋)))
4225, 41syldan 594 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) = ( ‘( 𝑋)))
4330, 4, 12, 6dochvalr 39113 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( 𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))))))
4425, 43syldan 594 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ( ‘( ‘( 𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))))))
454, 12, 6dochoc 39123 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( 𝑋))) = ( 𝑋))
4619, 45syldan 594 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ( ‘( ‘( 𝑋))) = ( 𝑋))
4744, 46eqtr3d 2779 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋))))) = ( 𝑋))
4842, 47ineq12d 4133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ((((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))) ∩ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( ‘( 𝑋)))))) = (( ‘( 𝑋)) ∩ ( 𝑋)))
49 dochnoncon.z . . . . . 6 0 = (0g𝑈)
5036, 4, 12, 5, 49dih0 39036 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾)) = { 0 })
5150adantr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾)) = { 0 })
5240, 48, 513eqtr3d 2785 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (( ‘( 𝑋)) ∩ ( 𝑋)) = { 0 })
539, 52sseqtrd 3946 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (𝑋 ∩ ( 𝑋)) ⊆ { 0 })
544, 5, 10dvhlmod 38866 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → 𝑈 ∈ LMod)
55 simpr 488 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → 𝑋𝑆)
564, 5, 12, 2dihrnlss 39033 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( 𝑋) ∈ 𝑆)
5719, 56syldan 594 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → ( 𝑋) ∈ 𝑆)
582lssincl 20007 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑆 ∧ ( 𝑋) ∈ 𝑆) → (𝑋 ∩ ( 𝑋)) ∈ 𝑆)
5954, 55, 57, 58syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (𝑋 ∩ ( 𝑋)) ∈ 𝑆)
6049, 2lss0ss 19990 . . 3 ((𝑈 ∈ LMod ∧ (𝑋 ∩ ( 𝑋)) ∈ 𝑆) → { 0 } ⊆ (𝑋 ∩ ( 𝑋)))
6154, 59, 60syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → { 0 } ⊆ (𝑋 ∩ ( 𝑋)))
6253, 61eqssd 3923 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆) → (𝑋 ∩ ( 𝑋)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cin 3870  wss 3871  {csn 4546  ccnv 5555  ran crn 5557  1-1wf1 6382  1-1-ontowf1o 6384  cfv 6385  (class class class)co 7218  Basecbs 16765  occoc 16815  0gc0g 16949  meetcmee 17824  0.cp0 17934  LModclmod 19904  LSubSpclss 19973  OPcops 36928  HLchlt 37106  LHypclh 37740  DVecHcdvh 38834  DIsoHcdih 38984  ocHcoch 39103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811  ax-riotaBAD 36709
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-iin 4912  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-tpos 7973  df-undef 8020  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-er 8396  df-map 8515  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-nn 11836  df-2 11898  df-3 11899  df-4 11900  df-5 11901  df-6 11902  df-n0 12096  df-z 12182  df-uz 12444  df-fz 13101  df-struct 16705  df-sets 16722  df-slot 16740  df-ndx 16750  df-base 16766  df-ress 16790  df-plusg 16820  df-mulr 16821  df-sca 16823  df-vsca 16824  df-0g 16951  df-proset 17807  df-poset 17825  df-plt 17841  df-lub 17857  df-glb 17858  df-join 17859  df-meet 17860  df-p0 17936  df-p1 17937  df-lat 17943  df-clat 18010  df-mgm 18119  df-sgrp 18168  df-mnd 18179  df-submnd 18224  df-grp 18373  df-minusg 18374  df-sbg 18375  df-subg 18545  df-cntz 18716  df-lsm 19030  df-cmn 19177  df-abl 19178  df-mgp 19510  df-ur 19522  df-ring 19569  df-oppr 19646  df-dvdsr 19664  df-unit 19665  df-invr 19695  df-dvr 19706  df-drng 19774  df-lmod 19906  df-lss 19974  df-lsp 20014  df-lvec 20145  df-lsatoms 36732  df-oposet 36932  df-ol 36934  df-oml 36935  df-covers 37022  df-ats 37023  df-atl 37054  df-cvlat 37078  df-hlat 37107  df-llines 37254  df-lplanes 37255  df-lvols 37256  df-lines 37257  df-psubsp 37259  df-pmap 37260  df-padd 37552  df-lhyp 37744  df-laut 37745  df-ldil 37860  df-ltrn 37861  df-trl 37915  df-tendo 38511  df-edring 38513  df-disoa 38785  df-dvech 38835  df-dib 38895  df-dic 38929  df-dih 38985  df-doch 39104
This theorem is referenced by:  dochnel2  39148  djhexmid  39167  dochexmidlem1  39216  lcfrlem23  39321
  Copyright terms: Public domain W3C validator