Proof of Theorem dochnoncon
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 2 | | dochnoncon.s |
. . . . . 6
⊢ 𝑆 = (LSubSp‘𝑈) |
| 3 | 1, 2 | lssss 20934 |
. . . . 5
⊢ (𝑋 ∈ 𝑆 → 𝑋 ⊆ (Base‘𝑈)) |
| 4 | | dochnoncon.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | | dochnoncon.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 6 | | dochnoncon.o |
. . . . . 6
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
| 7 | 4, 5, 1, 6 | dochocss 41368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) |
| 8 | 3, 7 | sylan2 593 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) |
| 9 | 8 | ssrind 4244 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (𝑋 ∩ ( ⊥ ‘𝑋)) ⊆ (( ⊥ ‘( ⊥
‘𝑋)) ∩ ( ⊥
‘𝑋))) |
| 10 | | simpl 482 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 11 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 12 | | eqid 2737 |
. . . . . . . . . 10
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
| 13 | | eqid 2737 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 14 | 11, 4, 12, 5, 13 | dihf11 41269 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈)) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈)) |
| 16 | | f1f1orn 6859 |
. . . . . . . 8
⊢
(((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran
((DIsoH‘𝐾)‘𝑊)) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran
((DIsoH‘𝐾)‘𝑊)) |
| 18 | 4, 12, 5, 1, 6 | dochcl 41355 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 19 | 3, 18 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 20 | 4, 5, 12, 13 | dihrnlss 41279 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
| 21 | 19, 20 | syldan 591 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
| 22 | 1, 13 | lssss 20934 |
. . . . . . . . 9
⊢ (( ⊥
‘𝑋) ∈
(LSubSp‘𝑈) → (
⊥
‘𝑋) ⊆
(Base‘𝑈)) |
| 23 | 21, 22 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ( ⊥ ‘𝑋) ⊆ (Base‘𝑈)) |
| 24 | 4, 12, 5, 1, 6 | dochcl 41355 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ (Base‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑋)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
| 25 | 23, 24 | syldan 591 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ( ⊥ ‘( ⊥
‘𝑋)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
| 26 | | f1ocnvdm 7305 |
. . . . . . 7
⊢
((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran
((DIsoH‘𝐾)‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑋)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) → (◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))) ∈
(Base‘𝐾)) |
| 27 | 17, 25, 26 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))) ∈
(Base‘𝐾)) |
| 28 | | hlop 39363 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| 29 | 28 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → 𝐾 ∈ OP) |
| 30 | | eqid 2737 |
. . . . . . . 8
⊢
(oc‘𝐾) =
(oc‘𝐾) |
| 31 | 11, 30 | opoccl 39195 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ (◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))) ∈
(Base‘𝐾)) →
((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) ∈
(Base‘𝐾)) |
| 32 | 29, 27, 31 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) ∈
(Base‘𝐾)) |
| 33 | | eqid 2737 |
. . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 34 | 11, 33, 4, 12 | dihmeet 41345 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))) ∈
(Base‘𝐾) ∧
((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) ∈
(Base‘𝐾)) →
(((DIsoH‘𝐾)‘𝑊)‘((◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))(meet‘𝐾)((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))))) =
((((DIsoH‘𝐾)‘𝑊)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) ∩
(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))))))) |
| 35 | 10, 27, 32, 34 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (((DIsoH‘𝐾)‘𝑊)‘((◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))(meet‘𝐾)((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))))) =
((((DIsoH‘𝐾)‘𝑊)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) ∩
(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))))))) |
| 36 | | eqid 2737 |
. . . . . . . 8
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 37 | 11, 30, 33, 36 | opnoncon 39209 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ (◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))) ∈
(Base‘𝐾)) →
((◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))(meet‘𝐾)((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))))) =
(0.‘𝐾)) |
| 38 | 29, 27, 37 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ((◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))(meet‘𝐾)((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))))) =
(0.‘𝐾)) |
| 39 | 38 | fveq2d 6910 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (((DIsoH‘𝐾)‘𝑊)‘((◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))(meet‘𝐾)((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))))) =
(((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾))) |
| 40 | 35, 39 | eqtr3d 2779 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ((((DIsoH‘𝐾)‘𝑊)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) ∩
(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))))) =
(((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾))) |
| 41 | 4, 12 | dihcnvid2 41275 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘( ⊥
‘𝑋)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) = ( ⊥
‘( ⊥ ‘𝑋))) |
| 42 | 25, 41 | syldan 591 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (((DIsoH‘𝐾)‘𝑊)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) = ( ⊥
‘( ⊥ ‘𝑋))) |
| 43 | 30, 4, 12, 6 | dochvalr 41359 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘( ⊥
‘𝑋)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))))) |
| 44 | 25, 43 | syldan 591 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))))) |
| 45 | 4, 12, 6 | dochoc 41369 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑋)) |
| 46 | 19, 45 | syldan 591 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑋)) |
| 47 | 44, 46 | eqtr3d 2779 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋))))) = ( ⊥
‘𝑋)) |
| 48 | 42, 47 | ineq12d 4221 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ((((DIsoH‘𝐾)‘𝑊)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))) ∩
(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(◡((DIsoH‘𝐾)‘𝑊)‘( ⊥ ‘( ⊥
‘𝑋)))))) = (( ⊥
‘( ⊥ ‘𝑋)) ∩ ( ⊥ ‘𝑋))) |
| 49 | | dochnoncon.z |
. . . . . 6
⊢ 0 =
(0g‘𝑈) |
| 50 | 36, 4, 12, 5, 49 | dih0 41282 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾)) = { 0 }) |
| 51 | 50 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (((DIsoH‘𝐾)‘𝑊)‘(0.‘𝐾)) = { 0 }) |
| 52 | 40, 48, 51 | 3eqtr3d 2785 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (( ⊥ ‘( ⊥
‘𝑋)) ∩ ( ⊥
‘𝑋)) = { 0
}) |
| 53 | 9, 52 | sseqtrd 4020 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (𝑋 ∩ ( ⊥ ‘𝑋)) ⊆ { 0 }) |
| 54 | 4, 5, 10 | dvhlmod 41112 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → 𝑈 ∈ LMod) |
| 55 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
| 56 | 4, 5, 12, 2 | dihrnlss 41279 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘𝑋) ∈ 𝑆) |
| 57 | 19, 56 | syldan 591 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → ( ⊥ ‘𝑋) ∈ 𝑆) |
| 58 | 2 | lssincl 20963 |
. . . 4
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘𝑋) ∈ 𝑆) → (𝑋 ∩ ( ⊥ ‘𝑋)) ∈ 𝑆) |
| 59 | 54, 55, 57, 58 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (𝑋 ∩ ( ⊥ ‘𝑋)) ∈ 𝑆) |
| 60 | 49, 2 | lss0ss 20947 |
. . 3
⊢ ((𝑈 ∈ LMod ∧ (𝑋 ∩ ( ⊥ ‘𝑋)) ∈ 𝑆) → { 0 } ⊆ (𝑋 ∩ ( ⊥ ‘𝑋))) |
| 61 | 54, 59, 60 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → { 0 } ⊆ (𝑋 ∩ ( ⊥ ‘𝑋))) |
| 62 | 53, 61 | eqssd 4001 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) → (𝑋 ∩ ( ⊥ ‘𝑋)) = { 0 }) |