Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leatb | Structured version Visualization version GIF version |
Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 30997 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
leatom.l | ⊢ ≤ = (le‘𝐾) |
leatom.z | ⊢ 0 = (0.‘𝐾) |
leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
leatb | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leatom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | leatom.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | leatom.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | op0le 37504 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
5 | 4 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ≤ 𝑋) |
6 | 5 | biantrurd 533 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃))) |
7 | opposet 37499 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
8 | 7 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
9 | 1, 3 | op0cl 37502 | . . . . . . 7 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
10 | leatom.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 1, 10 | atbase 37607 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
12 | id 22 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
13 | 9, 11, 12 | 3anim123i 1150 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
14 | 13 | 3com23 1125 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
15 | eqid 2736 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
16 | 3, 15, 10 | atcvr0 37606 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
17 | 16 | 3adant2 1130 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
18 | 1, 2, 15 | cvrnbtwn4 37597 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
19 | 8, 14, 17, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
20 | eqcom 2743 | . . . . 5 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
21 | 20 | orbi1i 911 | . . . 4 ⊢ (( 0 = 𝑋 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃)) |
22 | 19, 21 | bitrdi 286 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
23 | 6, 22 | bitrd 278 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
24 | orcom 867 | . 2 ⊢ ((𝑋 = 0 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 )) | |
25 | 23, 24 | bitrdi 286 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5093 ‘cfv 6480 Basecbs 17010 lecple 17067 Posetcpo 18123 0.cp0 18239 OPcops 37490 ⋖ ccvr 37580 Atomscatm 37581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-proset 18111 df-poset 18129 df-plt 18146 df-glb 18163 df-p0 18241 df-oposet 37494 df-covers 37584 df-ats 37585 |
This theorem is referenced by: leat 37611 leat2 37612 meetat 37614 |
Copyright terms: Public domain | W3C validator |