Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leatb Structured version   Visualization version   GIF version

Theorem leatb 37306
Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 30708 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leatb ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))

Proof of Theorem leatb
StepHypRef Expression
1 leatom.b . . . . . 6 𝐵 = (Base‘𝐾)
2 leatom.l . . . . . 6 = (le‘𝐾)
3 leatom.z . . . . . 6 0 = (0.‘𝐾)
41, 2, 3op0le 37200 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
543adant3 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 𝑋)
65biantrurd 533 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ ( 0 𝑋𝑋 𝑃)))
7 opposet 37195 . . . . . 6 (𝐾 ∈ OP → 𝐾 ∈ Poset)
873ad2ant1 1132 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
91, 3op0cl 37198 . . . . . . 7 (𝐾 ∈ OP → 0𝐵)
10 leatom.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
111, 10atbase 37303 . . . . . . 7 (𝑃𝐴𝑃𝐵)
12 id 22 . . . . . . 7 (𝑋𝐵𝑋𝐵)
139, 11, 123anim123i 1150 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴𝑋𝐵) → ( 0𝐵𝑃𝐵𝑋𝐵))
14133com23 1125 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → ( 0𝐵𝑃𝐵𝑋𝐵))
15 eqid 2738 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
163, 15, 10atcvr0 37302 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
17163adant2 1130 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
181, 2, 15cvrnbtwn4 37293 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
198, 14, 17, 18syl3anc 1370 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
20 eqcom 2745 . . . . 5 ( 0 = 𝑋𝑋 = 0 )
2120orbi1i 911 . . . 4 (( 0 = 𝑋𝑋 = 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃))
2219, 21bitrdi 287 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃)))
236, 22bitrd 278 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 0𝑋 = 𝑃)))
24 orcom 867 . 2 ((𝑋 = 0𝑋 = 𝑃) ↔ (𝑋 = 𝑃𝑋 = 0 ))
2523, 24bitrdi 287 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  0.cp0 18141  OPcops 37186  ccvr 37276  Atomscatm 37277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-proset 18013  df-poset 18031  df-plt 18048  df-glb 18065  df-p0 18143  df-oposet 37190  df-covers 37280  df-ats 37281
This theorem is referenced by:  leat  37307  leat2  37308  meetat  37310
  Copyright terms: Public domain W3C validator