Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leatb | Structured version Visualization version GIF version |
Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 30609 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
leatom.l | ⊢ ≤ = (le‘𝐾) |
leatom.z | ⊢ 0 = (0.‘𝐾) |
leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
leatb | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leatom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | leatom.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | leatom.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | op0le 37127 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
5 | 4 | 3adant3 1130 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ≤ 𝑋) |
6 | 5 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃))) |
7 | opposet 37122 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
8 | 7 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
9 | 1, 3 | op0cl 37125 | . . . . . . 7 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
10 | leatom.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 1, 10 | atbase 37230 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
12 | id 22 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
13 | 9, 11, 12 | 3anim123i 1149 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
14 | 13 | 3com23 1124 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
15 | eqid 2738 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
16 | 3, 15, 10 | atcvr0 37229 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
17 | 16 | 3adant2 1129 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
18 | 1, 2, 15 | cvrnbtwn4 37220 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
19 | 8, 14, 17, 18 | syl3anc 1369 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
20 | eqcom 2745 | . . . . 5 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
21 | 20 | orbi1i 910 | . . . 4 ⊢ (( 0 = 𝑋 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃)) |
22 | 19, 21 | bitrdi 286 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
23 | 6, 22 | bitrd 278 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
24 | orcom 866 | . 2 ⊢ ((𝑋 = 0 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 )) | |
25 | 23, 24 | bitrdi 286 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 0.cp0 18056 OPcops 37113 ⋖ ccvr 37203 Atomscatm 37204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-proset 17928 df-poset 17946 df-plt 17963 df-glb 17980 df-p0 18058 df-oposet 37117 df-covers 37207 df-ats 37208 |
This theorem is referenced by: leat 37234 leat2 37235 meetat 37237 |
Copyright terms: Public domain | W3C validator |