| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > leatb | Structured version Visualization version GIF version | ||
| Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 32248 analog.) (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
| leatom.l | ⊢ ≤ = (le‘𝐾) |
| leatom.z | ⊢ 0 = (0.‘𝐾) |
| leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| leatb | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leatom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | leatom.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 3 | leatom.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | op0le 39152 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| 5 | 4 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ≤ 𝑋) |
| 6 | 5 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃))) |
| 7 | opposet 39147 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 9 | 1, 3 | op0cl 39150 | . . . . . . 7 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 10 | leatom.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | 1, 10 | atbase 39255 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 12 | id 22 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 13 | 9, 11, 12 | 3anim123i 1151 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 14 | 13 | 3com23 1126 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 16 | 3, 15, 10 | atcvr0 39254 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 17 | 16 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 18 | 1, 2, 15 | cvrnbtwn4 39245 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
| 19 | 8, 14, 17, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
| 20 | eqcom 2736 | . . . . 5 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 21 | 20 | orbi1i 913 | . . . 4 ⊢ (( 0 = 𝑋 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃)) |
| 22 | 19, 21 | bitrdi 287 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
| 23 | 6, 22 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
| 24 | orcom 870 | . 2 ⊢ ((𝑋 = 0 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 )) | |
| 25 | 23, 24 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 Posetcpo 18244 0.cp0 18358 OPcops 39138 ⋖ ccvr 39228 Atomscatm 39229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-proset 18231 df-poset 18250 df-plt 18265 df-glb 18282 df-p0 18360 df-oposet 39142 df-covers 39232 df-ats 39233 |
| This theorem is referenced by: leat 39259 leat2 39260 meetat 39262 |
| Copyright terms: Public domain | W3C validator |