Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leatb Structured version   Visualization version   GIF version

Theorem leatb 39315
Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 32332 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leatb ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))

Proof of Theorem leatb
StepHypRef Expression
1 leatom.b . . . . . 6 𝐵 = (Base‘𝐾)
2 leatom.l . . . . . 6 = (le‘𝐾)
3 leatom.z . . . . . 6 0 = (0.‘𝐾)
41, 2, 3op0le 39209 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
543adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 𝑋)
65biantrurd 532 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ ( 0 𝑋𝑋 𝑃)))
7 opposet 39204 . . . . . 6 (𝐾 ∈ OP → 𝐾 ∈ Poset)
873ad2ant1 1133 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
91, 3op0cl 39207 . . . . . . 7 (𝐾 ∈ OP → 0𝐵)
10 leatom.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
111, 10atbase 39312 . . . . . . 7 (𝑃𝐴𝑃𝐵)
12 id 22 . . . . . . 7 (𝑋𝐵𝑋𝐵)
139, 11, 123anim123i 1151 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴𝑋𝐵) → ( 0𝐵𝑃𝐵𝑋𝐵))
14133com23 1126 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → ( 0𝐵𝑃𝐵𝑋𝐵))
15 eqid 2736 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
163, 15, 10atcvr0 39311 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
17163adant2 1131 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
181, 2, 15cvrnbtwn4 39302 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
198, 14, 17, 18syl3anc 1373 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
20 eqcom 2743 . . . . 5 ( 0 = 𝑋𝑋 = 0 )
2120orbi1i 913 . . . 4 (( 0 = 𝑋𝑋 = 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃))
2219, 21bitrdi 287 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃)))
236, 22bitrd 279 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 0𝑋 = 𝑃)))
24 orcom 870 . 2 ((𝑋 = 0𝑋 = 𝑃) ↔ (𝑋 = 𝑃𝑋 = 0 ))
2523, 24bitrdi 287 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  Posetcpo 18324  0.cp0 18438  OPcops 39195  ccvr 39285  Atomscatm 39286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-proset 18311  df-poset 18330  df-plt 18345  df-glb 18362  df-p0 18440  df-oposet 39199  df-covers 39289  df-ats 39290
This theorem is referenced by:  leat  39316  leat2  39317  meetat  39319
  Copyright terms: Public domain W3C validator