Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leatb Structured version   Visualization version   GIF version

Theorem leatb 39339
Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 32326 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leatb ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))

Proof of Theorem leatb
StepHypRef Expression
1 leatom.b . . . . . 6 𝐵 = (Base‘𝐾)
2 leatom.l . . . . . 6 = (le‘𝐾)
3 leatom.z . . . . . 6 0 = (0.‘𝐾)
41, 2, 3op0le 39233 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
543adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 𝑋)
65biantrurd 532 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ ( 0 𝑋𝑋 𝑃)))
7 opposet 39228 . . . . . 6 (𝐾 ∈ OP → 𝐾 ∈ Poset)
873ad2ant1 1133 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
91, 3op0cl 39231 . . . . . . 7 (𝐾 ∈ OP → 0𝐵)
10 leatom.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
111, 10atbase 39336 . . . . . . 7 (𝑃𝐴𝑃𝐵)
12 id 22 . . . . . . 7 (𝑋𝐵𝑋𝐵)
139, 11, 123anim123i 1151 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴𝑋𝐵) → ( 0𝐵𝑃𝐵𝑋𝐵))
14133com23 1126 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → ( 0𝐵𝑃𝐵𝑋𝐵))
15 eqid 2731 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
163, 15, 10atcvr0 39335 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
17163adant2 1131 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
181, 2, 15cvrnbtwn4 39326 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
198, 14, 17, 18syl3anc 1373 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
20 eqcom 2738 . . . . 5 ( 0 = 𝑋𝑋 = 0 )
2120orbi1i 913 . . . 4 (( 0 = 𝑋𝑋 = 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃))
2219, 21bitrdi 287 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃)))
236, 22bitrd 279 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 0𝑋 = 𝑃)))
24 orcom 870 . 2 ((𝑋 = 0𝑋 = 𝑃) ↔ (𝑋 = 𝑃𝑋 = 0 ))
2523, 24bitrdi 287 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  0.cp0 18327  OPcops 39219  ccvr 39309  Atomscatm 39310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-proset 18200  df-poset 18219  df-plt 18234  df-glb 18251  df-p0 18329  df-oposet 39223  df-covers 39313  df-ats 39314
This theorem is referenced by:  leat  39340  leat2  39341  meetat  39343
  Copyright terms: Public domain W3C validator