Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ncvr1 Structured version   Visualization version   GIF version

Theorem ncvr1 39232
Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
ncvr1.b 𝐵 = (Base‘𝐾)
ncvr1.u 1 = (1.‘𝐾)
ncvr1.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
ncvr1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 𝐶𝑋)

Proof of Theorem ncvr1
StepHypRef Expression
1 ncvr1.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2734 . . . 4 (le‘𝐾) = (le‘𝐾)
3 ncvr1.u . . . 4 1 = (1.‘𝐾)
41, 2, 3ople1 39151 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋(le‘𝐾) 1 )
5 opposet 39141 . . . . . 6 (𝐾 ∈ OP → 𝐾 ∈ Poset)
65ad2antrr 726 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset)
71, 3op1cl 39145 . . . . . 6 (𝐾 ∈ OP → 1𝐵)
87ad2antrr 726 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1𝐵)
9 simplr 768 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋𝐵)
10 simpr 484 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋)
11 eqid 2734 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
121, 2, 11pltnle 18352 . . . . 5 (((𝐾 ∈ Poset ∧ 1𝐵𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 )
136, 8, 9, 10, 12syl31anc 1374 . . . 4 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 )
1413ex 412 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 ))
154, 14mt2d 136 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 (lt‘𝐾)𝑋)
16 simpll 766 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP)
177ad2antrr 726 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1𝐵)
18 simplr 768 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 𝑋𝐵)
19 simpr 484 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋)
20 ncvr1.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
211, 11, 20cvrlt 39230 . . 3 (((𝐾 ∈ OP ∧ 1𝐵𝑋𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋)
2216, 17, 18, 19, 21syl31anc 1374 . 2 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋)
2315, 22mtand 815 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  Basecbs 17229  lecple 17280  Posetcpo 18323  ltcplt 18324  1.cp1 18438  OPcops 39132  ccvr 39222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-p1 18440  df-oposet 39136  df-covers 39226
This theorem is referenced by:  lhp2lt  39962
  Copyright terms: Public domain W3C validator