| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ncvr1 | Structured version Visualization version GIF version | ||
| Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.) |
| Ref | Expression |
|---|---|
| ncvr1.b | ⊢ 𝐵 = (Base‘𝐾) |
| ncvr1.u | ⊢ 1 = (1.‘𝐾) |
| ncvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| ncvr1 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ncvr1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | ncvr1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 4 | 1, 2, 3 | ople1 39151 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾) 1 ) |
| 5 | opposet 39141 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 6 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset) |
| 7 | 1, 3 | op1cl 39145 | . . . . . 6 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 8 | 7 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 ∈ 𝐵) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋 ∈ 𝐵) | |
| 10 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋) | |
| 11 | eqid 2734 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 12 | 1, 2, 11 | pltnle 18352 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
| 13 | 6, 8, 9, 10, 12 | syl31anc 1374 | . . . 4 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 )) |
| 15 | 4, 14 | mt2d 136 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 (lt‘𝐾)𝑋) |
| 16 | simpll 766 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP) | |
| 17 | 7 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 ∈ 𝐵) |
| 18 | simplr 768 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝑋 ∈ 𝐵) | |
| 19 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋) | |
| 20 | ncvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 21 | 1, 11, 20 | cvrlt 39230 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
| 22 | 16, 17, 18, 19, 21 | syl31anc 1374 | . 2 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
| 23 | 15, 22 | mtand 815 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 lecple 17280 Posetcpo 18323 ltcplt 18324 1.cp1 18438 OPcops 39132 ⋖ ccvr 39222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-p1 18440 df-oposet 39136 df-covers 39226 |
| This theorem is referenced by: lhp2lt 39962 |
| Copyright terms: Public domain | W3C validator |