Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ncvr1 | Structured version Visualization version GIF version |
Description: No element covers the lattice unit. (Contributed by NM, 8-Jul-2013.) |
Ref | Expression |
---|---|
ncvr1.b | ⊢ 𝐵 = (Base‘𝐾) |
ncvr1.u | ⊢ 1 = (1.‘𝐾) |
ncvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
ncvr1 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncvr1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | ncvr1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
4 | 1, 2, 3 | ople1 37132 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾) 1 ) |
5 | opposet 37122 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
6 | 5 | ad2antrr 722 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset) |
7 | 1, 3 | op1cl 37126 | . . . . . 6 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
8 | 7 | ad2antrr 722 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 ∈ 𝐵) |
9 | simplr 765 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋 ∈ 𝐵) | |
10 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋) | |
11 | eqid 2738 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
12 | 1, 2, 11 | pltnle 17971 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
13 | 6, 8, 9, 10, 12 | syl31anc 1371 | . . . 4 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
14 | 13 | ex 412 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 )) |
15 | 4, 14 | mt2d 136 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 (lt‘𝐾)𝑋) |
16 | simpll 763 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP) | |
17 | 7 | ad2antrr 722 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 ∈ 𝐵) |
18 | simplr 765 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝑋 ∈ 𝐵) | |
19 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋) | |
20 | ncvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
21 | 1, 11, 20 | cvrlt 37211 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
22 | 16, 17, 18, 19, 21 | syl31anc 1371 | . 2 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
23 | 15, 22 | mtand 812 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 ltcplt 17941 1.cp1 18057 OPcops 37113 ⋖ ccvr 37203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-p1 18059 df-oposet 37117 df-covers 37207 |
This theorem is referenced by: lhp2lt 37942 |
Copyright terms: Public domain | W3C validator |