Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ncvr1 | Structured version Visualization version GIF version |
Description: No element covers the lattice unit. (Contributed by NM, 8-Jul-2013.) |
Ref | Expression |
---|---|
ncvr1.b | ⊢ 𝐵 = (Base‘𝐾) |
ncvr1.u | ⊢ 1 = (1.‘𝐾) |
ncvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
ncvr1 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncvr1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2758 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | ncvr1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
4 | 1, 2, 3 | ople1 36789 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾) 1 ) |
5 | opposet 36779 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
6 | 5 | ad2antrr 725 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset) |
7 | 1, 3 | op1cl 36783 | . . . . . 6 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
8 | 7 | ad2antrr 725 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 ∈ 𝐵) |
9 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋 ∈ 𝐵) | |
10 | simpr 488 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋) | |
11 | eqid 2758 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
12 | 1, 2, 11 | pltnle 17642 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
13 | 6, 8, 9, 10, 12 | syl31anc 1370 | . . . 4 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
14 | 13 | ex 416 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 )) |
15 | 4, 14 | mt2d 138 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 (lt‘𝐾)𝑋) |
16 | simpll 766 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP) | |
17 | 7 | ad2antrr 725 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 ∈ 𝐵) |
18 | simplr 768 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝑋 ∈ 𝐵) | |
19 | simpr 488 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋) | |
20 | ncvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
21 | 1, 11, 20 | cvrlt 36868 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
22 | 16, 17, 18, 19, 21 | syl31anc 1370 | . 2 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
23 | 15, 22 | mtand 815 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 Basecbs 16541 lecple 16630 Posetcpo 17616 ltcplt 17617 1.cp1 17714 OPcops 36770 ⋖ ccvr 36860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-p1 17716 df-oposet 36774 df-covers 36864 |
This theorem is referenced by: lhp2lt 37599 |
Copyright terms: Public domain | W3C validator |