| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ncvr1 | Structured version Visualization version GIF version | ||
| Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.) |
| Ref | Expression |
|---|---|
| ncvr1.b | ⊢ 𝐵 = (Base‘𝐾) |
| ncvr1.u | ⊢ 1 = (1.‘𝐾) |
| ncvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| ncvr1 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ncvr1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | ncvr1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 4 | 1, 2, 3 | ople1 39179 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾) 1 ) |
| 5 | opposet 39169 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 6 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset) |
| 7 | 1, 3 | op1cl 39173 | . . . . . 6 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 8 | 7 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 ∈ 𝐵) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋 ∈ 𝐵) | |
| 10 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋) | |
| 11 | eqid 2730 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 12 | 1, 2, 11 | pltnle 18303 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
| 13 | 6, 8, 9, 10, 12 | syl31anc 1375 | . . . 4 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 )) |
| 15 | 4, 14 | mt2d 136 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 (lt‘𝐾)𝑋) |
| 16 | simpll 766 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP) | |
| 17 | 7 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 ∈ 𝐵) |
| 18 | simplr 768 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝑋 ∈ 𝐵) | |
| 19 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋) | |
| 20 | ncvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 21 | 1, 11, 20 | cvrlt 39258 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
| 22 | 16, 17, 18, 19, 21 | syl31anc 1375 | . 2 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
| 23 | 15, 22 | mtand 815 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 Basecbs 17185 lecple 17233 Posetcpo 18274 ltcplt 18275 1.cp1 18389 OPcops 39160 ⋖ ccvr 39250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-p1 18391 df-oposet 39164 df-covers 39254 |
| This theorem is referenced by: lhp2lt 39990 |
| Copyright terms: Public domain | W3C validator |