Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ncvr1 Structured version   Visualization version   GIF version

Theorem ncvr1 38598
Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
ncvr1.b 𝐵 = (Base‘𝐾)
ncvr1.u 1 = (1.‘𝐾)
ncvr1.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
ncvr1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 𝐶𝑋)

Proof of Theorem ncvr1
StepHypRef Expression
1 ncvr1.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2724 . . . 4 (le‘𝐾) = (le‘𝐾)
3 ncvr1.u . . . 4 1 = (1.‘𝐾)
41, 2, 3ople1 38517 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋(le‘𝐾) 1 )
5 opposet 38507 . . . . . 6 (𝐾 ∈ OP → 𝐾 ∈ Poset)
65ad2antrr 723 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset)
71, 3op1cl 38511 . . . . . 6 (𝐾 ∈ OP → 1𝐵)
87ad2antrr 723 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1𝐵)
9 simplr 766 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋𝐵)
10 simpr 484 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋)
11 eqid 2724 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
121, 2, 11pltnle 18292 . . . . 5 (((𝐾 ∈ Poset ∧ 1𝐵𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 )
136, 8, 9, 10, 12syl31anc 1370 . . . 4 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 )
1413ex 412 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 ))
154, 14mt2d 136 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 (lt‘𝐾)𝑋)
16 simpll 764 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP)
177ad2antrr 723 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1𝐵)
18 simplr 766 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 𝑋𝐵)
19 simpr 484 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋)
20 ncvr1.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
211, 11, 20cvrlt 38596 . . 3 (((𝐾 ∈ OP ∧ 1𝐵𝑋𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋)
2216, 17, 18, 19, 21syl31anc 1370 . 2 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋)
2315, 22mtand 813 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098   class class class wbr 5138  cfv 6533  Basecbs 17142  lecple 17202  Posetcpo 18261  ltcplt 18262  1.cp1 18378  OPcops 38498  ccvr 38588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-proset 18249  df-poset 18267  df-plt 18284  df-lub 18300  df-p1 18380  df-oposet 38502  df-covers 38592
This theorem is referenced by:  lhp2lt  39328
  Copyright terms: Public domain W3C validator