![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ncvr1 | Structured version Visualization version GIF version |
Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.) |
Ref | Expression |
---|---|
ncvr1.b | ⊢ 𝐵 = (Base‘𝐾) |
ncvr1.u | ⊢ 1 = (1.‘𝐾) |
ncvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
ncvr1 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncvr1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2737 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | ncvr1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
4 | 1, 2, 3 | ople1 39187 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾) 1 ) |
5 | opposet 39177 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
6 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset) |
7 | 1, 3 | op1cl 39181 | . . . . . 6 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
8 | 7 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 ∈ 𝐵) |
9 | simplr 769 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋 ∈ 𝐵) | |
10 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋) | |
11 | eqid 2737 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
12 | 1, 2, 11 | pltnle 18405 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
13 | 6, 8, 9, 10, 12 | syl31anc 1374 | . . . 4 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 ) |
14 | 13 | ex 412 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 )) |
15 | 4, 14 | mt2d 136 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 (lt‘𝐾)𝑋) |
16 | simpll 767 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP) | |
17 | 7 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 ∈ 𝐵) |
18 | simplr 769 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 𝑋 ∈ 𝐵) | |
19 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋) | |
20 | ncvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
21 | 1, 11, 20 | cvrlt 39266 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
22 | 16, 17, 18, 19, 21 | syl31anc 1374 | . 2 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋) |
23 | 15, 22 | mtand 816 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 lecple 17314 Posetcpo 18374 ltcplt 18375 1.cp1 18491 OPcops 39168 ⋖ ccvr 39258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-p1 18493 df-oposet 39172 df-covers 39262 |
This theorem is referenced by: lhp2lt 39998 |
Copyright terms: Public domain | W3C validator |